

"ΜΜΚΠ σταδιου ΙΙΙ, Συνδυασμένη Θεραπευτική Προσέγγιση & Θεραπευτικοί Αλγόριθμοι στην Κλινική Πράξη"

Ιωάννης Χ. Γκιόζος Πνευμονολόγος MD, PhD, FCCP

Επ. Συνεργάτης Πανεπιστημίου Αθηνών Ογκολογική Μονάδα Γ΄ΠΠ ΓΝΝΘΑ "Η Σωτηρία"

Disclosures

Scientific Advisory Board: Boehringer Ingelheim

Honoraria for Lectures: ASTRA, Boehringer Ingelheim, Bristol Myers Squibb, Roche

Scientific Research: ASTRA, AbbVie

What Constitutes Stage III NSCLC?

- Heterogeneous group for which the treatment can differ dramatically based on details in disease presentation
- Treatment options include surgery, chemotherapy, radiotherapy, immunotherapy, or any combination of these depending on N descriptor, P.S. of patient, comorbidities...
- Multidisciplinary Approach is Mandatory
- Most common presentations of stage III NSCLC
 - Stage IIIA: ipsilateral mediastinal node involvement
 - Stage IIIB: contralateral mediastinal node involvement

	No	N1	N2	Nз	M1a-1b any N	M1c any N
Tia	la1	Пв	IIIA	Шв	IVA	IVB
Т1ь	laz	Пв	Ша	Шв	IVA	IVB
T1c	las	Нв	IIIA	Шв	IVA	IVB
T2a	lв	Нв	IIIA	Шв	IVA	IVB
Таь	HA	Пв	IIIA	Шв	IVA	IVB
Тз	Шв	IIIA	Шв	IIIc	IVA	IVB
T4 (IIIA	HIA.	Шв	IIIc	IVA	IVB

Non-Small Cell Lung Cancer Staging Atlas

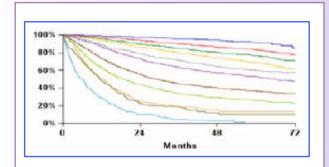
	No	N1	N2	Nз	M1a-1b any N	M1c any N
Tia	la1	Пв		Шв	IVA	IVB
Тњ	laz	Пв	Ша	Шв	IVA	IVB
Tic	las	Нв	IIIA	Шв	IVA	IVB
T2a	lв	Нв	IIIA	Шв	IVA	IVB
Т2ь	HA	Пв	\III	Шв	IVA	IVB
Тз	Шв	IIIA	IIIB	IIIc	IVA	IVB
T4	IIIa	IIIA	Шв	IIIc	IVA	IVB

Non-Small Cell Lung Cancer Staging Atlas

	No	N1	N2	Νз	M1a-1b any N	M1c any N
Tía	la1	Нв	IIIA		IVA	IVB
Т1ь	laz	Пв	IIIA	Шв	IVA	IVB
T1c	las	Нв	IIIa	Шв	IVA	IVB
T2a	lв	Пв	IIIA	Шв	IVA	IVB
Т2ь	HA	Пв	IIIA		IVA	IVB
Тз	Шв	IIIA	Шв	IIIc	IVA	IVB
T4	Ша	IIIA	Шв	IIIc	IVA	IVB

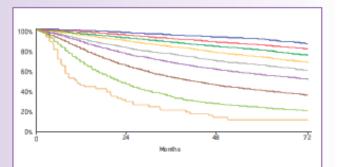
Non-Small Cell Lung Cancer Staging Atlas

Proposals for stage groupings


Proposals for stage groupings

Clinical Staging

Path	ologi	ical S	tagi	ng


	Events/N	MST	24 months	60 months
IA1	68/781	NR	97%	92%
IA2	505/3105	NR	94%	83%
IA3	546/2417	NR	90%	77%
IB	560/1928	NR	87%	68%
IIA	215/585	NR	79%	60%
IIB	605/1453	66.0	72%	53%
IIIA	2052/3200	29.3	55%	36%
IIIB	1551/2140	19.0	44%	26%
IIIC	831/986	12.6	24%	13%
IVA	336/484	11.5	23%	10%
IVB	328/389	6.0	10%	0%

	Events/N	MST	24 months	60 months
IA1	139/1389	NR	97%	90%
IA2	823/5633	NR	94%	85%
IA3	875/4401	NR	92%	80%
IB	1618/6095	NR	89%	73%
IIA	556/1638	NR	82%	65%
IIB	2175/5226	NR	76%	56%
IIIA	3219/5756	41.9	65%	41%
IIIB	1215/1729	22.0	47%	24%
IIIC	55/69	11.0	30%	12%

Overall survival expressed as median survival time (MST), 2-year and 5-year survival by clinical stage using the proposed International Association for the Study of Lung Cancer recommendations

Goldstraw Pet a L.J.Thora c Oncol 2016; 11,39-51.

Overall survival expressed as median survival time (MST), 2-year and 5-years urvival by pathologic stage using the proposed International Association for the Study of Lung Cancer recommendations

Goldstraw P et al. J Thorac Oncol 2016; 11,39-51.

Lung Cancer Stage Grouping (AJCC 8th Edition)

5-Yr OS,* %	IA1	IA2	IA3	IB	IIA	IIB
Clinical	92	83	77	68	60	53
Pathologic	90	85	80	73	65	56
5-Yr OS,* %	IIIA	IIIB	IIIC	: IV	′ A	IVB
Clinical	36	26	13	1	0	0
Pathologic	41	24	12			-
Locally Advanced						

^{*5-}yr OS per IASLC global database for patients receiving NSCLC diagnoses from 1999-2010.

Detterbeck. Chest. 2017;151:193. Goldstraw. J Thorac Oncol. 2016;11:39.

T/M	Subgroup [†]	N0	N1	N2	N3
T1	T1a ≤ 1 T1b > 1-2 T1c > 2-3	IA1 IA2 IA3	IIB IIB IIB	IIIA IIIA IIIA	IIIB IIIB IIIB
T2	T2a <i>Cent, Visc Pl</i> T2a > 3-4	IB IB	IIB IIB	IIIA IIIA	IIIB IIIB
Т3	T2b > 4-5 T3 > 5-7 T3 Inv T3 Satell	IIA IIB IIB	IIB IIIA IIIA IIIA	IIIA IIIB IIIB IIIB	IIIB IIIC IIIC IIIC
T4	T4 > 7 T4 Inv T4 Ipsi Nod	IIIA IIIA IIIA	IIIA IIIA IIIA	IIIB IIIB IIIB	IIIC IIIC IIIC
M1	M1a <i>Contra Nod</i> M1a <i>PI Disem</i> M1b <i>Single</i>	IVA IVA IVA	IVA IVA IVA	IVA IVA IVA	IVA IVA IVA
	M1c Multi	IVB	IVB	IVB	IVB

[†]All numbers in cm.

	No	N1	N2	Nз	M1a-1b any N	M1c any N
Tia	la1	Пв	IIIA	Шв	IVA	IVB
Т1ь	laz	Пв	Ша	Шв	IVA	IVB
T1c	las	Нв	IIIA	Шв	IVA	IVB
T2a	lв	Нв	IIIA	Шв	IVA	IVB
Таь	HA	Пв	IIIA	Шв	IVA	IVB
Тз	Шв	IIIA	Шв	IIIc	IVA	IVB
T4 (IIIA	HIA.	Шв	IIIc	IVA	IVB

Non-Small Cell Lung Cancer Staging Atlas

Treatment of T3N1 to T4N0-1

- · Surgery & Adjuvant Chemotherapy
- Definitive Concurrent Chemo-Radiation and consolidation Immunotherapy
- Induction therapy & Surgery in experienced centers e.g. Pancoast tumors
- Systemic Therapy based on histology, molecular status, PD L1 score

	No	N1	N2	Nз	M1a-1b any N	M1c any N
Tia	la1	Пв		Шв	IVA	IVB
Т1ь	la2	Пв	Ша	Шв	IVA	IVB
Tic	las	Пв	IIIA	Шв	IVA	IVB
T2a	lв	Пв	IIIA	Шв	IVA	IVB
Т2ь	HA	Пв	\III	Шв	IVA	IVB
Тз	Шв	IIIA	Шв	IIIc	IVA	IVB
T4	IIIA	IIIA	Шв	IIIc	IVA	IVB

Non-Small Cell Lung Cancer Staging Atlas

cN2 disease

Heterogeneity of population

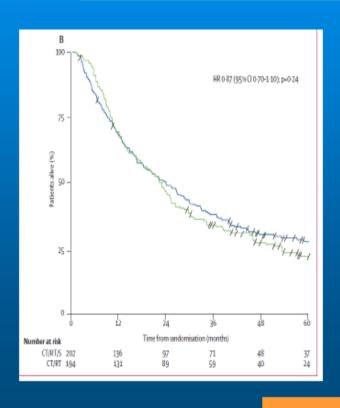
Imaged N2 ≠ EBUS N2 ≠ med. N2 ≠ thoracotomy N2

Difficult to compare

reported series and trial results

HETEROGENEITY OF IIIA N2 DISEASE

• If N2 found at mediastinoscopy but attempt at resection


IIIA 9% / 5y survival If mediastinoscopy negative but N2 found at thoracotomy

> IIIA 24% / 5y survival

Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial

Kathy S Albain, R Suzanne Swann, Valerie W Rusch, Andrew T Turrisi III, Frances A Shepherd, Colum Smith, Yuhchyau Chen, Robert B Livingston, Richard H Feins, David R Gandara, Willard A Fry, Gail Darling, David H Johnson, Mark R Green, Robert C Miller, Joanne Ley, William T Sause, James D Cox

INT 0139 5 y survival C/RT/S 27% vs 20% C/RT

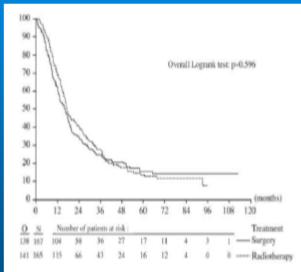
Op mortality of lobectomy was 1%
R pneumonectomies (n=29) or complex pneumonectomies did not do so well!

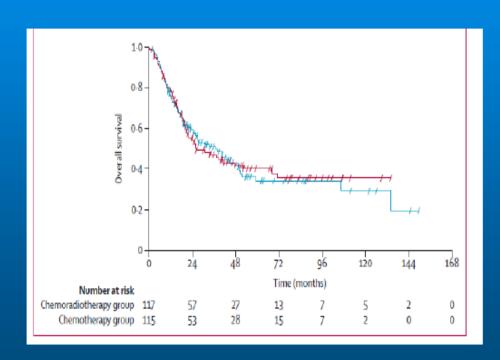
Relapse at T site 3% vs 19% (6.3 X) in favor of surgery arm

Randomized Controlled Trial of Resection Versus Radiotherapy After Induction Chemotherapy in Stage IIIA-N2 Non-Small-Cell Lung Cancer

Jan P. van Meerbeeck, Gijs W. P. M. Kramer, Paul E. Y. Van Schil, Catherine Legrand, Egbert F. Smit, Franz Schramel, Vivianne C. Tjan-Heijnen, Bonne Biesma, Channa Debruyne, Nico van Zandwijk, Ted A. W. Splinter, Giuseppe Giaccone

On behalf of the European Organisation for Research and Treatment of Cancer-Lung Cancer Group



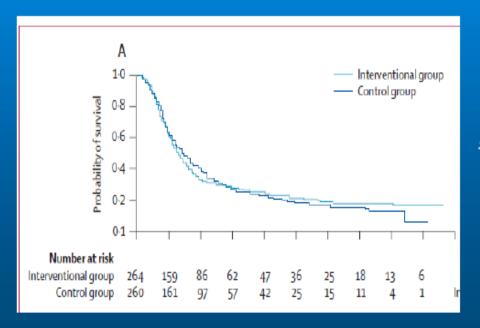

Fig. 2. Overall survival rates estimated from time of randomization using Kaplan–Meier analyses. P value (two-sided) was calculated using the log-rank test. O = number of deaths; N = number of patients. Hazard ratio = 1.06, 95% confidence interval = 0.84 to 1.35; P = .596.

EORTC 5 y survival C/S 15.7% vs 14% C/RT

Op mortality of 72 pneumonectomies was 6.9%

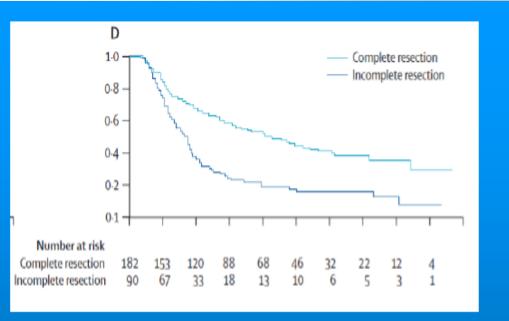
Induction chemoradiation in stage IIIA/N2 non-small-cell lung cancer: a phase 3 randomised trial

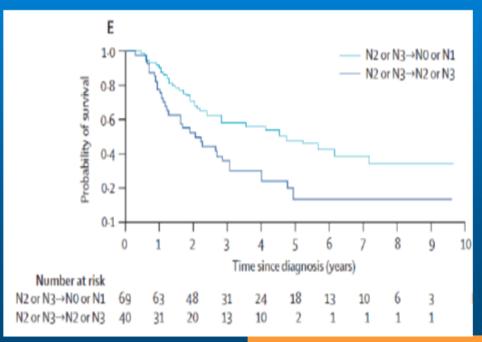
Miklos Pless, Roger Stupp, Hans-Beat Ris, Rolf A Stahel, Walter Weder, Sandra Thierstein, Marie-Aline Gerard, Alexandros Xyrafas, Martin Früh, Richard Cathomas, Alfred Zippelius, Arnaud Roth, Milorad Bijelovic, Adrian Ochsenbein, Urs R Meier, Christoph Mamot, Daniel Rauch, Oliver Gautschi, Daniel C Betticher, René-Olivier Mirimanoff, Solange Peters, on behalf of the SAKK Lung Cancer Project Group


SAKK 16/00

Median OS were 37 months in CRT/S and 26 months in C/S

pCR w IC alone was 12%

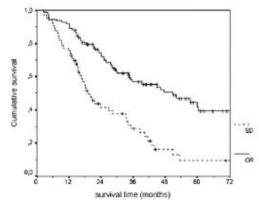

Effect of preoperative chemoradiation in addition to preoperative chemotherapy: a randomised trial in stage III non-small-cell lung cancer


Michael Thomas, Christian Rübe, Petra Hoffknecht, Hans N Macha, Lutz Freitag, Albert Linder, Norman Willich, Michael Hamm, Gerhard W Sybrecht, Dieter Ukena, Karl-Matthias Deppermann, Cornelia Dröge, Dorothea Riesenbeck, Achim Heinecke, Cristina Saverland, Klaus Junker, Wolfgang E Berdel*, Michael Semik*, for the German Lung Cancer Cooperative Group**

GLCGG 5 y survival C/S 21% vs 18% C/RT/S

Thomas M et al Lancet Onc 2008; 9: 636-48

Importance of R0 resection and influence of nodal downstaging


Thomas M et al Lancet Onc 2008; 9: 636-48

Which patients should be operated on after induction chemotherapy for N2 non-small cell lung cancer? Analysis of a 7-year experience in 175 patients

Alessandro Stefani, MD, Marco Alifano, MD, Antonio Bobbio, MD, Madalina Grigoroiu, MD, Rami Jouni, MD, Pierre Magdeleinat, MD, and Jean-Francois Regnard, MD

Conclusions: Surgery after chemotherapy could be effective for selected patients with N2 non-small cell lung cancer. Survival for responders is satisfactory, even in case of persistent N2 disease. Prognosis for nonresponders is disappointing. (J Thorac Cardiovasc Surg 2010;140:356-63)

Response by CT alone

Standardized Uptake Decrease on [18F]-Fluorodeoxyglucose Positron Emission Tomography After Neoadjuvant Chemotherapy Is a Prognostic Classifier for Long-Term Outcome After Multimodality Treatment: Secondary Analysis of a Randomized Trial for Resectable Stage IIIA/B Non–Small-Cell Lung Cancer

Christoph Pöttgen, Thomas Gauler, Alexander Bellendorf, Maja Guberina, Andreas Bockisch, Nina Schwenzer, Frank Heinzelmann, Sebastian Cordes, Martin H. Schuler, Stefan Welter, Georgios Stamatis, Godehard Friedel, Kaid Darwiche, Karl-Heinz Jöckel, Wilfried Eberhardt, and Martin Stuschke

Conclusion

%SUV_{remaining} is a predictor for survival and other end points after multimodality treatment and can serve as a parameter for treatment stratification after induction chemotherapy or for evaluation of adjuvant new systemic treatment options for high-risk patients.

J Clin Oncol 34:2526-2533. @ 2016 by American Society of Clinical Oncology

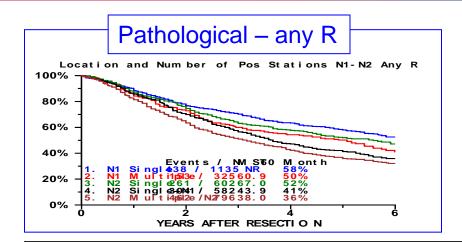
Factors influencing historically in operating in N2 Disease

Performance Status

Co-morbidities of the patient

ypRO or pRO achievement

The amount of N2 disease identified by: number of nodes, extracapsular disease, Med vs EBUS/EUS, number of zones


Where is the lobe of origin in relation to N+ involvement

Need for less than a Right pneumonectomy?

Response to induction therapy

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

N1 Single = N1a
N1 Multiple = N1b
N2 Single N2 ("skip mets") = N2a1
N2 Single N2 + N1 = N2a2
N2 Multiple N2 = N2b

N1a vs N1b vs N2a1 vs N2a2 vs N2b Comparisons Adjusted for Histology (adeno vs others), Sex, Age 60+, R0 Resection, a (Cox PH regression on All cases)	s others), Sex, Age 60+ , <mark>R0 Resection</mark> , and R	egion.	
	comparison	HR	Р

comparison	HR	P
N1b vs N1a	1.38	0.0005
N2a1 (skip) vs N1b	0.92	0.4331
N2a2 vs N2a1 (skip)	1.37	0.0002
N2b vs N2a2	1.21	0.0117
N2a2 vs N1b	1.26	0.0197

	No	N1	N2	Νз	M1a-1b any N	M1c any N
Tia	la1	Нв		Шв	IVA	IVB
Т1ь	laz	Пв	Ша	Шв	IVA	IVB
Tic	las	Нв	IIIA	Шв	IVA	IVB
T2a	lв	Нв	IIIA	Шв	IVA	IVB
Т2ь	HA	Пв	\III	Шв	IVA	IVB
Тз	Шв	IIIA	Шв	IIIc	IVA	IVB
T4	IIIa	IIIA	Шв	IIIc	IVA	IVB

Non-Small Cell Lung Cancer Staging Atlas

TNM Classification according to the IASLC Proposals

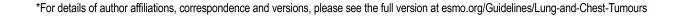
8.0

Guidelines on the Radical Management of Patients with Lung Cancer

British Thoracic Society and the Society for Cardiothoracic Surgery in Great Britain and Ireland

1.2.3 N2 disease

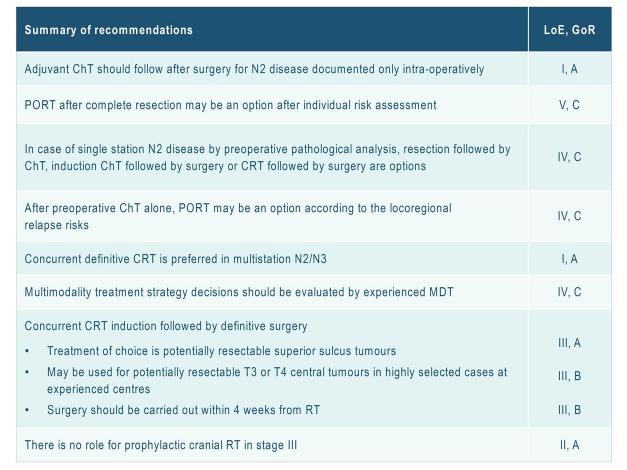
25. Consider radical radiotherapy or chemoradiotherapy in patients with T1-4N2 (bulky or fixed) M0 disease. [B] 26. Consider surgery as part of multimodality management in patients with T1-3N2 (non-fixed, non-bulky, single zone) M0 disease. [B]


An ESMO Product

Early and locally advanced non-small-cell lung cancer (NSCLC)

ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up

P. E. Postmus, K. M. Kerr, M. Oudkerk, S. Senan, D. A. Waller, J. Vansteenkiste, C. Escriu & S. Peters, on behalf of the ESMO Guidelines Committee*

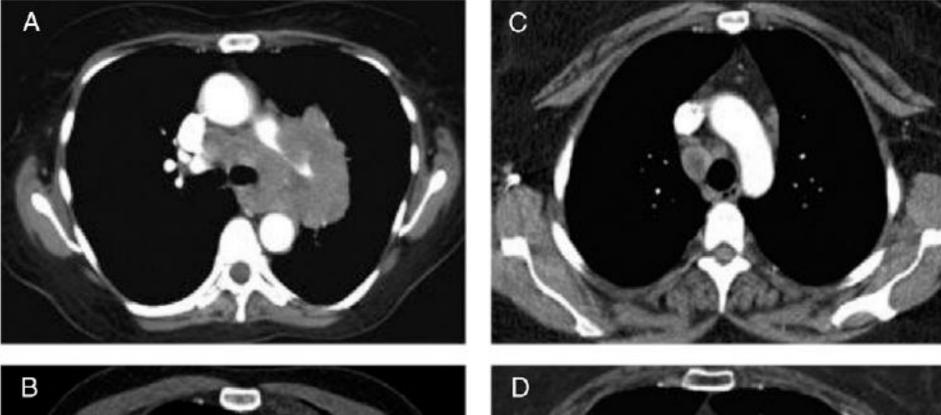


CLINICAL PRACTICE GUIDELINES

Treatment

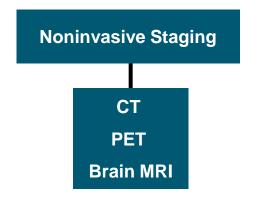
Locally advanced NSCLC (stage III)

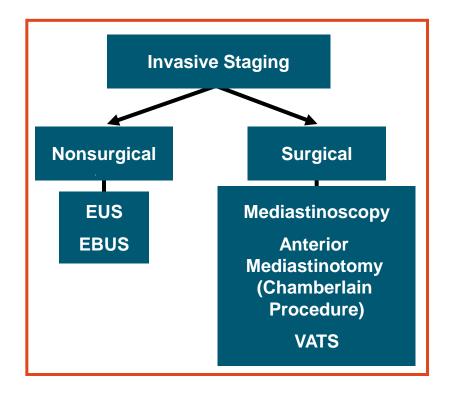
– Resectable



© 2017 ESMO. All rights reserved. esmo.org/Guidelines/Lung-and-Chest-Tumours/Early-Stage-and-Locally-Advanced-non-metastatic-Non-Small-Cell-Lung-Cancer

 ${\tt Figure\ 4.\ [Sections\ 2.0,\ 4.1]\ Definition\ of\ intrathoracic\ radiographic\ categories\ of\ lung\ cancer.}$


Group	Description	Definition (by chest CT scan)
A	Mediastinal infiltration	Tumor mass within the mediastinum such that discrete lymph nodes cannot be distinguished or measured ^a
В	Enlarged discrete mediastinal nodes	Discrete mediastinal nodes ≥ 1 cm in short-axis diameter on a transverse CT image
С	Clinical stage II or central stage I tumor	Normal mediastinal nodes (< 1 cm) but enlarged N1 nodes (≥ 1 cm) or a central tumor (within proximal one-third of the hemithorax)
D	Peripheral clinical stage I tumor	Normal mediastinal and N1 nodes (< 1 cm) and a peripheral tumor (within outer two-thirds of hemithorax)



Mediastinal Staging for Lung Cancer

Why Do Invasive Staging?

 Accuracy of CT and PET staging in mediastinal lymph nodes from 43 CT and 45 PET trials

Modality, %	Sensitivity	Specificity
CT (N = 7368)	55	81
PET (N = 4105)	80	88

Accuracy Comparison of Staging Tests for NSCLC

Procedure	No. of Studies	N	Sensitivity, %	Specificity, %
Mediastinoscopy	35	10,648	81	100
EUS	26	2443	89	100
EBUS	26	2756	89	100
EBUS/EUS	7	811	91	100

CHEST

Classification of the Thoroughness of Mediastinal Staging of Lung Cancer

Frank Detterbeck, MD, FCCP; Jonathan Puchalski, MD; Ami Rubinowitz, MD; and David Cheng, MD

Table 1—Classification of Type and Thoroughness of Clinical Mediastinal Staging of Lung Cancer

Type/Name	Description	Thoroughness	Detailed Definition
1/Surgical	Mediastinoscopy, Chamberlain, VATS	A, Complete removals	Complete lymphadenectomy by TEMLA or VAMLA (1, 2R, 2L, 3, 4R, 4L, 7, 8; and 5, 6 if LUL tumor)
	Chamberlani, VAIS	B, Systematic sampling ^a	Mediastinoscopy with sampling/exploration of 2R, 2L, 4R, 4L, 7, and 5, 6 if LUL tumor
		C, Selective sampling	Mediastinoscopy with biopsy of ≥ 1 station, and must
		D, Poor	include any node suspicious by imaging Mediastinoscopy with visual assessment only; no node biopsy or no nodal tissue in samples
2/Needle-	EUS-NA, EBUS-NA,	A, Complete samplings	Sampling of each visible node in each station (1, 2R, 2L, 3, 4R, 4L,
based	TBNA, TTNA	B, Systematic sampling ^a	7, 8; and 5, 6 if LUL tumor), ≥ 3 passes per node or ROSE ^b Nodes in each station sampled (2R, 4R, 7, 4L, 2L, and 5, 6
		C, Selective sampling	if LUL tumor), ≥3 passes per node or ROSE ^b Biopsy of ≥ 1 station, which must include a node suspicious by
		D, Poor	imaging or ≥ 1 cm by US if present, or < 3 passes and no ROSE Visual assessment only; no node biopsied or no lymphatic tissue in aspirates
3/Metabolic	PET	A, Complete assessment	Integrated CT/PET, glucose < 200, clear identification for each mediastinal and N1 node station whether nodes have
		B, Systematic assessment	uptake > mediastinal background or not Dedicated PET, clear identification for each mediastinal and N1 node station whether nodes have uptake > mediastinal background or not
		C, Selective assessment D, Poor	Vague description of level of PET uptake or location of suspicious nodes, or PET read without CT correlation No PET uptake in primary tumor or no dedicated PET scanner
4/Radiologic	CT	A, Complete assessment	IV contrast, ≤5-mm slice. For each mediastinal and hilar N1
		B, Systematic assessment	node station the size of the largest node is provided Clear identification for each mediastinal and N1 node station whether
		C, Selective assessment	nodes are enlarged or not ($\geq 1 \text{ cm}^c$), $\leq 8 \text{-mm}$ slice, $\pm \text{ contrast}$ Mediastinal nodes $\geq 1 \text{ cm}^b$ identified in report, but not by station,
		D, Poor	± contrast Unclear definition of abnormal nodes and/or location of nodes

Recommendations

- Mediastinal nodal staging in patients with suspected or proven non-small-cell lung cancer (NSCLC) with abnormal mediastinal and/or hilar nodes at computed tomography (CT) and/or positron emission tomography (PET), endosonography is recommended over surgical staging as the initial procedure (Recommendation grade A).
- Subsequent surgical staging is recommended, when endosonography does not show malignant nodal involvement (Recommendation grade B).

Combined endobronchial and esophageal endosonography for the diagnosis and staging of lung cancer: European Society of Gastrointestinal Endoscopy (**ESGE**) Guideline, in cooperation with the European Respiratory Society (**ERS**) and the European Society of Thoracic Surgeons (**ESTS**) Endoscopy 2015; 47: 545–559

Recommendations

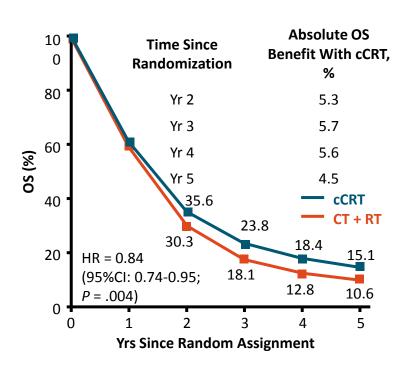
- For mediastinal staging in patients with centrally located suspected or proven NSCLC without mediastinal or hilar involvement at CT and/or CTPET, we suggest performance of EBUS-TBNA, with or without EUS-(B)-FNA, in preference to surgical staging (Recommendation grade D).
- For mediastinal nodal staging in patients with suspected or proven non-small-cell peripheral lung cancer without mediastinal involvement at CT or CT-PET, we suggest that EBUS-TBNA and/or EUS-(B)-FNA should be performed before therapy, provided that one or more of the following conditions is present:
 - (i) enlarged or FDG-PET(+) ipsilateral hilar nodes;
 - (ii) primary tumor without FDG uptake;
 - (iii) tumor size ≥3cm

(Recommendation grade C).

Combined endobronchial and esophageal endosonography for the diagnosis and staging of lung cancer: European Society of Gastrointestinal Endoscopy (**ESGE**) Guideline, in cooperation with the European Respiratory Society (**ERS**) and the European Society of Thoracic Surgeons (**ESTS**) Endoscopy 2015; 47: 545–559

	No	N1	N2	Nз	M1a-1b any N	M1c any N
Tia	la1	Пв		Шв	IVA	IVB
Т1ь	laz	Пв	Ша	Шв	IVA	IVB
T1c	EA	Нв	IIIA	Шв	IVA	IVB
T2a	lв	Нв	IIIA	Шв	IVA	IVB
Т2ь	HA	Пв	III	Шв	IVA	IVB
Тз	Шв	IIIA	IIIB	IIIc	IVA	IVB
T4	Ша	IIIA	IIIB	IIIc	IVA	IVB

Non-Small Cell Lung Cancer Staging Atlas



	No	N1	N2	Nз	M1a-1b any N	M1c any N
Tía	la1	Пв	Ша	III	IVA	IVB
Тњ	la2	Пв	Ша	Шв	IVA	IVB
Tic	EAI	Пв	Ша	Шв	IVA	IVB
T2a	lв	Нв	IIIA	Шв	IVA	IVB
Т2ь	HA	Пв	IIIA		IVA	IVB
Тз	Шв	IIIA	Шв	IIIc	IVA	IVB
T4	IIIa	IIIA	Шв	IIIc	IVA	IVB

Non-Small Cell Lung Cancer Staging Atlas

Meta-analysis of Concurrent CRT vs Sequential CT + RT in Locally Advanced NSCLC: OS

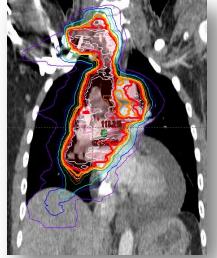
_Trial	cCRT No. Deaths/	CT + RT No. Entered	HR	HR (95% CI)
CALGB 8831	45/46	39/45	#	1.12 (0.73-1.72)
WJLCG	131/156	142/158	=	0.78 (0.61-0.99)
RTOG 9410	180/204	189/203	7	0.80 (0.65-0.98)
GMMA Ankara 9	5 15/15	15/15		0.87 (0.41-1.82)
GLOT-GFPC NPC	87/102	96/103	-	0.80 (0.60-1.07)
EORTC 08972	63/80	66/78	曹	0.98 (0.69-1.39)
Total	521/603	547/602		0.84 (0.74-0.95)
Test for heterogeneity: $x_5^2 = 3.24$, $P = .66$, $I^2 = 0\%$		0.25 1.00 4.00 cCRT Better CT + RT Better		

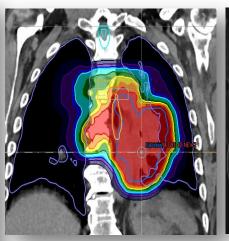
Median follow-up: 6 yrs cCRT effect: P = .004

Auperin. J Clin Oncol. 2010;28:2181.

Stage III Unresectable NSCLC: Survival Outcomes Using Recommended CRT Regimens

Trial	Regimen	Disease Stage	Median Survival, Mos
SWOG 9019 ^[1]	Cisplatin/etoposide + XRT ^[1]	IIIB	OS: 15
LAMP ^[2]	Carboplatin/paclitaxel + XRT ^[2]	IIIA/B	OS (CT \rightarrow RT): 13.0 OS (CT \rightarrow CT + RT): 12.7 OS (RT + CT \rightarrow CT): 16.3
PROCLAIM ^[3]	Cisplatin/pemetrexed + XRT ^[3]	IIIA/B (nonsquamous)	OS: 26.8 (vs 25.0 for cisplatin/etoposide + XRT) PFS: 11.4 vs 9.8

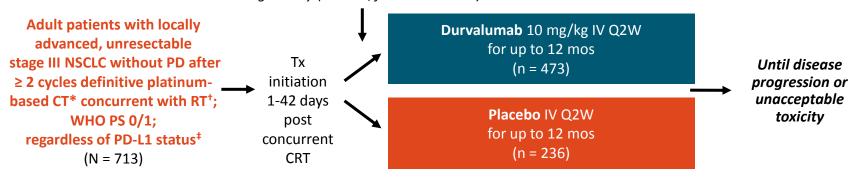

^{1.} Albain KS, et al. J Clin Oncol. 2002;20:3454-3560. 2. Belani CP, et al.


J Clin Oncol. 2005;23:5883-5891. 3. Senan S, et al. J Clin Oncol. 2016;34:953-962.

We Need to Ensure That All Eligible Patients With Stage III NSCLC Receive Concurrent Chemoradiation

 Vast majority of patients with stage III NSCLC are eligible for concurrent CRT but registry data show that 50% or fewer of these patients receive it

> Selected Treatment Plans of Patients With NSCLC Who Were Deemed Not to Be Candidates for CRT but in Fact Were Eligible


Clinical images courtesy of Kristin Higgins, MD. Emory University.

Ahmed. Clin Lung Cancer. 2017;18:706.

PACIFIC: Study Design

Randomized, double-blind, placebo-controlled phase III trial

Stratified by age (< 65 vs ≥ 65 yrs), sex, and smoking history (current/former vs never)

^{*}Platinum-based CT contained etoposide, vinorelbine, paclitaxel, docetaxel, vinblastine, or pemetrexed.

†92% of patients received 54 Gy to 66 Gy RT dose. †If available, archived pre-cCRT tumor tissue tested for PD-L1.

- Co-primary endpoints: PFS by BICR per RECIST v1.1, OS
- Secondary endpoints including: ORR, DoR, TTDM by BICR, PFS2 by investigator, safety, PROs

Antonia. N Engl J Med. 2017;377:1919. Antonia. WCLC 2018. Abstract PL02.01. Antonia. N Engl J Med. 2018;379:2342.

Questions That ARE Addressed.....

- Do we recommend durvalumab after sequential chemotherapy and radiation therapy in patients who are not candidates for concurrent treatment due to frailty and other comorbidities?
- Do we recommend durvalumab in patients who do not recover well from concurrent CRT and cannot start durvalumab within 2-6 wks of treatment?
- Do we recommend durvalumab in patients with driver mutations after concurrent therapy?
- Mandatory biomarkers?
- Required early Response assessment
- PET-CT scan after Chemo-RT?
- How would you treat a patient with stage III NSCLC who progresses to metastatic disease on or after durvalumab?

Questions That ARE Addressed.....

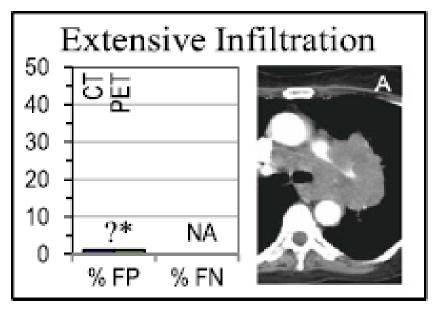
- What is the optimal treatment duration?
- When should PD-(L)1 inhibition start (induction, concurrent, maintenance)?
- The role of Surgery?
- Radiotherapy Dose?

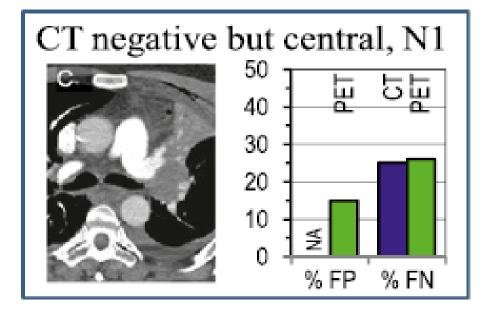
Conclusions.....

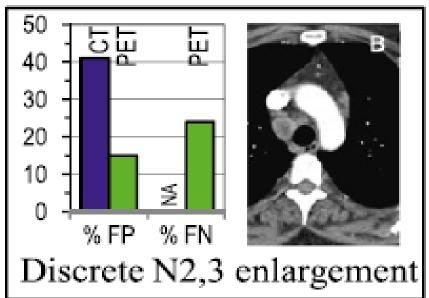
- Stage III, locally advanced NSCLC is heterogeneous with the majority of patients having unresectable tumors
 - 8th edition of the TNM classification for lung cancer divides stage III into 3 subgroups, stage IIIA, IIIB, and IIIC
 - Experts recommend invasive staging procedures for NSCLC
 - Multidisciplinary management is critical
- Before era of immunotherapy, concurrent CRT ± induction chemotherapy demonstrated 20% to 25% "cure" rate
 - Multiple strategies to improve survival in this setting tested without success
- Advanced RT technologies have led to safer and more efficacious treatment of patients with stage III NSCLC, yet according to registry data, 50% or fewer of these patients receive concurrent CRT
 - All eligible patients with stage III NSCLC should receive concurrent CRT

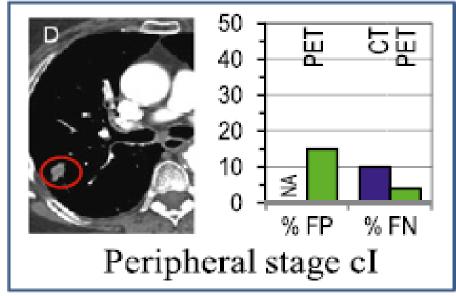
Conclusions....

 RT induces multiple immunomodulatory changes that may influence immunotherapy efficacy


- In patients with unresectable stage III NSCLC and a good PS, concurrent platinum-based CRT followed by consolidation durvalumab is SoC
 - PACIFIC trial has changed the approach in unresectable stage III NSCLC


Clinical trials should be prioritized to continue progress in this setting




"We have to use all the help that we can get"

Confirmation of Intrathoracic Stage

Bayes' Theorem

Prior probability of "H"

$$P(H|E) = \frac{P(H)}{P(H)}$$

Posterior probability of "H" given the evidence

Likelihood of the evidence "E" if the hypothesis "H" is true

$$P(H)$$
 $P(E|H)$

Prior probability that the evidence itself is true

Combined Modality Therapy in Stage III NSCLC:

Concurrent vs Sequential Chemoradiotherapy

- Meta-analysis of concurrent CRT vs sequential CRT in 6 trials of locally advanced NSCLC (N = 1205)
 - $-\uparrow$ OS (HR: 0.84; P=.004)
 - $-\uparrow$ PFS (HR: 0.90; P=.07)
 - $-\downarrow$ risk of locoregional progression (HR: 0.77; P=.01)
 - No difference in rates of distant progression between strategies
 - Acute esophageal toxicity (grade 3/4) increased from 4% to 18% (RR: 4.9; 95% CI: 3.1-7.8; P<.001)
 - No difference in acute pulmonary toxicity

Evaluate and Sample Contralateral Mediastinal Lymph Nodes, if Present

- When performed for diagnosis and staging purposes, however,
 EBUS-TBNA should be performed first from N3 nodes, followed by
 N2 nodes and for diagnosis, when necessary N1 nodes
- If N3 nodes were found to be positive for malignancy on rapid onsite cytological evaluation, the procedure could be terminated

Combined endobronchial and esophageal endosonography for the diagnosis and staging of lung cancer: European Society of Gastrointestinal Endoscopy (**ESGE**) Guideline, in cooperation with the European Respiratory Society (**ERS**) and the European Society of Thoracic Surgeons (**ESTS**) Endoscopy 2015; 47: 545–559