14⁰ Εκπαιδευτικό Φροντιστήριο ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΠΝΕΥΜΟΝΟΛΟΓΙΑ

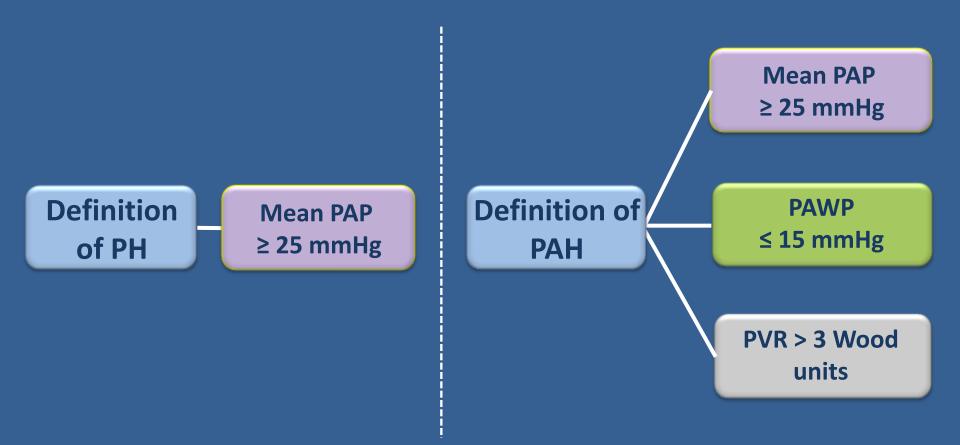
Πνευμονική Υπέρταση

Ηρακλής Τσαγκάρης Αναπληρωτής Καθηγητής Εντατικής Θεραπείας Αττικό Νοσοκομείο

Δήλωση συμφερόντων

Συμμετοχή σε συνέδρια, κλινικές μελέτες ή συμβουλευτικά των εταιρειών Actelion, Bayer, ELPEN, Galenica, Glaxo GSK, Lilly, MSD, Pfizer

European Heart Journal doi:10.1093/eurhearti/ehv317


2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)

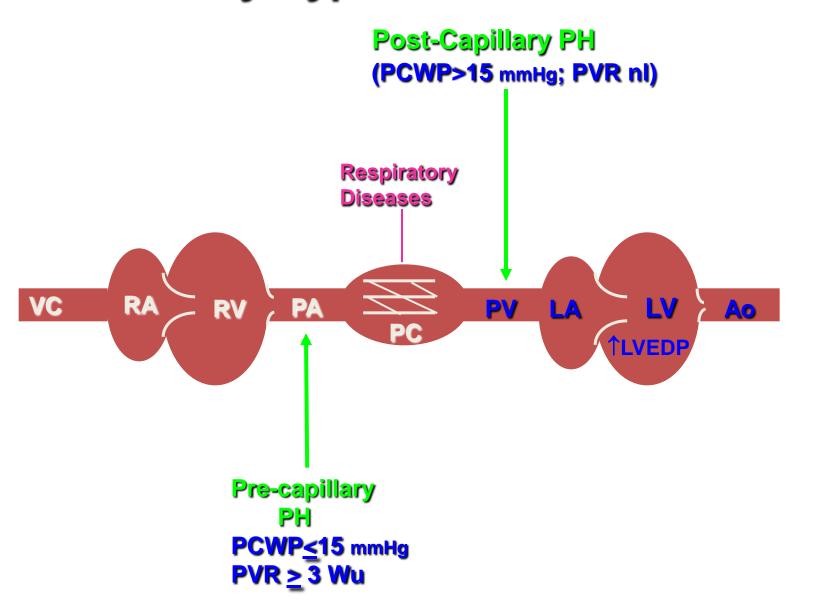
Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT)

Authors/Task Force Members: Nazzareno Galiè* (ESC Chairperson) (Italy), Marc Humbert*a (ERS Chairperson) (France), Jean-Luc Vachieryc (Belgium), Simon Gibbs (UK), Irene Lang (Austria), Adam Torbicki (Poland), Gérald Simonneaua (France), Andrew Peacocka (UK), Anton Vonk Noordegraafa (The Netherlands), Maurice Beghettib (Switzerland), Ardeschir Ghofrania (Germany), Miguel Angel Gomez Sanchez (Spain), Georg Hansmannb (Germany), Walter Klepetkoc (Austria), Patrizio Lancellotti (Belgium), Marco Matuccid (Italy), Theresa McDonagh (UK), Luc A. Pierard (Belgium), Pedro T. Trindade (Switzerland), Maurizio Zompatoric (Italy) and Marius Hoepera (Germany)

5th World Symposium on PH: Haemodynamic definition of PAH

PAP: pulmonary arterial pressure; PAWP: pulmonary artery wedge pressure; PVR: pulmonary vascular resistance

Definition	Characteristics ^a	Clinical group(s) ^b
PH	PAPm ≥25 mmHg	All
Pre-capillary PH	PAPm ≥25 mmHg PAWP ≤15 mmHg	I. Pulmonary arterial hypertension 3. PH due to lung diseases 4. Chronic thromboembolic PH 5. PH with unclear and/or multifactorial mechanisms
Post-capillary PH	PAPm ≥25 mmHg PAWP >15 mmHg	PH due to left heart disease PH with unclear and/or multifactorial mechanisms
Isolated post-capillary PH (Ipc-PH)	DPG <7 mmHg and/or PVR ≤3 WU ^c	
Combined post-capillary and pre-capillary PH (Cpc-PH)	DPG ≥7 mmHg and/or PVR >3 WU ^c	


Etiologic classification of pulmonary hypertension

• MPA = CO * PVR + PCWP

MPA: mean pulmonary artery, PCWP: pulmonary capillary wedge pressure,

CO: cardiac output, PVR: pulmonary vascular resistance

Pulmonary Hypertension: Define Lesion

Table 4 Comprehensive clinical classification of pulmonary hypertension (updated from Simonneau et al. 5)

Colmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
- 1.2.1 BMPR2 mutation.
- 1.2.2 Other mutations
- 1.3 Drugs and toxins induced.
- 1.4 Associated with:
- 1.4.1 Connective tissue disease.
- 1.4.2 Human immunodeficiency virus (HIV) infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart disease (Table 6)
- 1.45 Schistosomiasis

1°. Pulmonary veno-occlusive disease and/or pulmonary capillary hasmangiomatosis

- 1',1 Idiopathic
- 112 Heritable
- 1'.2.1 BF2AK4 mutation
- 1'.2.2 Other mutations
- 113 Drugs, toxins and radiation induced
- 1'.4 Associated with:
- 1'.4.1 Connective tissue disease
- 1',4.2 HIV infection

Persistent pulmonary hypertension of the newborn

I. Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies
- 2.5 Congenital /acquired pulmonary veins stenosis

Pulminary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitul lung disease
- Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

Chronic thromboembolic pulmonary hypertansion and other pulmonary arters obstructions

- 4.1 Chronic thromboembokic pulmonary hypertension
- 4.1 Chronic thromboembolic pulmonary hyp 4.2 Other pulmonary artisty obstructions
- 4.2.1 Angiosarcoma
- 422 Other intravascular tumors
- 423 Arreritis
- 4.2.4 Congenital pulmonary arteries stenoses
- 4.2.5 Parasites (hydatidosis)

5. Pulmonary hypertension with unclear and/or multifecturial markeniums

- Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders, sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmonary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dalysis), segmental pulmonary hypertension

1. Pulmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
 - 1.2.1 BMPR2 mutation
 - 1.2.2 Other mutations
- 1.3 Drugs and toxins induced
- 1.4 Associated with:
 - 1.4.1 Connective tissue disease
 - 1.4.2 Human immunodeficiency virus (HIV) infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart disease (Table 6)
 - 1.4.5 Schistosomiasis

I'. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis

- 1'.1 Idiopathic
- 1'.2 Heritable
 - 1'.2.1 EIF2AK4 mutation
 - 1'.2.2 Other mutations
- 1'.3 Drugs, toxins and radiation induced
- 1'.4 Associated with:
 - 1'.4.1 Connective tissue disease
 - 1'.4.2 HIV infection

I". Persistent pulmonary hypertension of the newborn

I. Pulmonary arterial hypertension			
I.1 Idiopathic I.2 Heritable	Definite	Likely	Possible
1.2.1 BMPR2 mutation 1.2.2 Other mutations 1.3 Drugs and toxins induced 1.4 Associated with. 1.4.1 Connective tissue disease 1.4.2 Human immunodeficiency virus (HIV) infection 1.4.3 Portal hypertension	 Aminorex Fenfluramine Dexfenfluramine Toxic rapeseed oil Benfluorex 	AmphetaminesDasatinibL-tryptophanMethamphetamines	 Cocaine Phenylpropanolamine St John's Wort Amphetamine-like
1.4.4 Congenital heart disease (Table 6) 1.4.5 Schistosomiasis 1'. Pulmonary veno-occlusive disease and/or pulm capillary haemangiomatosis	Selective serotonin		drugs • Interferon α and β • Some
I'.1 Idiopathic I'.2 Heritable I'.2.1 EIF2AK4 mutation I'.2.2 Other mutations I'.3 Drugs, toxins and radiation induced I'.4 Associated with: I'.4.1 Connective tissue disease I'.4.2 HIV infection			chemotherapeutic agents such as alkylating agents (mytomycine C, cyclophosphamide) ^b

1". Persistent pulmonary hypertension of the newborn

Table 4 Comprehensive clinical classification of pulmonary hypertension (updated from Simonneau et al. 5)

1. Pulmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
- 1.2.1 BMPR2 mutation
- 1.2.2 Other mutations
- 1.3 Drugs and toxins induced.
- 1.4 Associated with:
- 1.4.1 Connective tissue disease.
- 1.4.2 Human immunodeficiency virus (HIV) infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart disesse (Table 6)
- 1.45 Schistosomiasis

1°. Pulmonary veno-occlusive disease and/or pulmonary capillary hasmangiomatosis

- 1',1 Idiopathic
- 112 Heritable
- 1'.2.1 EIFZAK4 mutation
- 1'.2.2 Other mutations
- 113 Drugs, toxins and radiation induced
- 1'.4 Associated with:
- 1'.4.1 Connective tissue disease
- 1'.4.2 HIV infection

1". Persistent pulmonary hypertension of the newborn

2. Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopethies
- 2.5 Congenital /acquired pulmonary veins stenesis

Pulminary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease.
- 3.2 Interstitul lung disease
- Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

4. Chronic thromboembolic pulmonary hypertansion

- 4.1 Chronic thromboembolic pulmonary hypertension
- 42 Other pulmonary artisty obstructions
- 4.2.1 Anglosarcoma
- 422 Other intravascular tumors
- 423 Arreritis
- 4.2.3 Acteritis
- 4.2.4 Congenital pulmonary arteries stenases 4.2.5 Parasites (hydatidosis)

5. Pulmonary hypertension with unclear and/or

- Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders, sarcoidosis, pulmonary histocytosis. lymphangioleiomyomatosis
- Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmonary tumoral thrombothic microangioputly, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension

2. Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies
- 2.5 Congenital /acquired pulmonary veins stenosis

Table 4 Comprehensive clinical classification of pulmonary hypertension (updated from Simonneau et al. 5)

Pulmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
- 1.2.1 BMPR2 mutation
- 1.2.2 Other mutations
- 1.3 Drugs and toxins induced
- 1.4 Associated with:
- 1.4.1 Connective tissue disease.
- 1.4.2 Human immunodeficiency virus (HIV) infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart disease (Table 6)
- 1.4.5 Schistosomiasis

1'. Pulmonary veno-occlusive disease and/or pulmonary capillary hasmangiomatosis

- 1'.1 Idiopathic
- 112 Heritable
- 1'.2.1 BF2AK4 mutation
- 1'.2.2 Other mutations
- 11.3 Drugs, toxins and radiation induced
- I'.4 Associated with:
- 1'.4.1 Connective tissue disease
- 1',4.2 HIV infection

1". Persistent pulmonary hypertension of the newborn

L Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital / acquired left heart inflow/outflow tract. obstruction and congenital cardiomyopathies
- 2.5 Congenital /acquired polmonary voins stenosis.

Pulmanary hypertension due to lung diseases and/or

- 3,1 Chronic obstructive pulmonary disease.
- 3.2 Interstitul lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

Chronic thromboembolic pulmonary hypertension

- 4.1 Chronic thromboembolic pulmonary hypertension
- 4.2 Other pulmonary artisty obstructions
- 4.2.1 Anglosarcoma
- 422 Other intravascular tumors
- 423 Arrecitin
- 4.2.4 Congenital pulmonary arteries stenoses 4.2.5 Parasites (hydatidosis)

. Pulmonary hypertension with unclear and/or

- 5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders, sarcoidosis, pulmonary histiocytosis. lymphangioleiomyomatosis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmorary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension

3. Pulmonary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

Table 4 Comprehensive clinical classification of pulmonary hypertension (updated from Simonneau et al. 5)

1. Pulmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
- 1.2.1 BMPR2 mutation
- 1.2.2 Other mutations
- 1.3 Drugs and toxins induced.
- 1.4 Associated with:
- 1.4.1 Connective tissue disease.
- 1.4.2 Human immunodeficiency virus (HIV) infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart disease (Table 6)
- 1.45 Schistosomiasis

11. Pulmonary veno-occlusive disease and/or pulmonary capillary has mangiomatosis

- 1',1 Idiopathic
- 112 Heritable
- 1'.2.1 BF2AK4 mutation
- 1'22 Other mutations
- 11.3 Drugs, toxins and radiation induced
- 1'.4 Associated with:
- 1'.4.1 Connective tissue disease
- 1'.4.2 HIV infection

1". Persistent pulmonary hypertension of the newborn

2. Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopethies
- 2.5 Congenital /acquired polmonary voins stenosis

Pulminary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitul lung disease
- Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

Chronic thromboembolic pulmonary hypertunsion and action pulmonary artery obstructions

- 4.1 Chronic thromboembolic pulmonary hypertension.
- 42 Other pulmonary artery obstructions
- 4.2.1 Angiosarcoma
- 422 Other intravascular tumors
- 4.2.3 Arteritis
- 4.2.4 Congenital pulmonary arteries stenoses
- 4.2.5 Parasites (hydatidosis)

S. Pulmonary hypertension with unclear and/or

- Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders, sarcoidosis, pulmonary histocytosis. lymphangioleiomyomatosis
- Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmonary tumoral thrombothic microangioputly, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension

4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions

- 4.1 Chronic thromboembolic pulmonary hypertension
- 4.2 Other pulmonary artery obstructions
 - 4.2.1 Angiosarcoma
 - 4.2.2 Other intravascular tumors
 - 4.2.3 Arteritis
 - 4.2.4 Congenital pulmonary arteries stenoses
 - 4.2.5 Parasites (hydatidosis)

Table 4 Comprehensive clinical classification of pulmonary hypertension (updated from Simonneau et al.5)

Pulmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
- 1.2.1 BMPR2 mutacion.
- 1.2.2 Other mutations
- 1.3 Drugs and toxins induced
- 1.4 Associated with:
- 141 Connective tissue disease.
- 1.4.2 Human immunodeficiency virus (HIV) infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart disesse (Table 6)
- 1.4.5 Schistosomiasis

1'. Pulmonary veno-occlusive disease and/or pulmonary capillary hasmangiomatosis

- 1'.1 Idiopathic
- 112 Heritable
- 1'.2.1 BF2AK4 mutation
- 1'.2.2 Other mutations
- 11.3 Drugs, toxins and radiation induced
- I'.4 Associated with:
- 1'.4.1 Connective tissue disease
- 1',4.2 HIV infection

1". Persistent pulmonary hypertension of the newborn

L Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital / acquired left heart inflow/outflow tract. obstruction and congenital cardiomyopathies
- 2.5 Congenital /acquired pulmonary veins stenesis

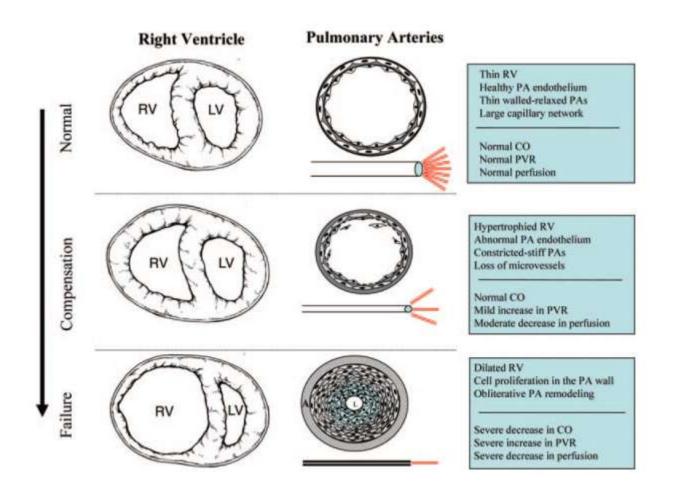
- 3.1 Chronic obstructive pulmonary disease.
- 3.2 Interstitul lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

Chronic thromboembolic pulmonary hypertansion

- 4.1 Chronic thromboembolic pulmonary hypertension
- 4.2 Other pulmonary artisty obstructions
- 4.2.1 Angiosarcoma
- 422 Other intravascular tumors
- 423 Arrecitin
- 4.2.4 Congenital pulmonary arteries stenoses

Pulmonary hypertension with unclear and/or ultifacturial mechanisms

- 5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders, sarcoidosis, pulmonary histiocytosis. lymphangioleiomyomatosis:
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmorary tumoral thrombothic microangiopathy. fibrosing mediastinitis, chronic renal failure (with/without dalysis), segmental pulmonary hypertension

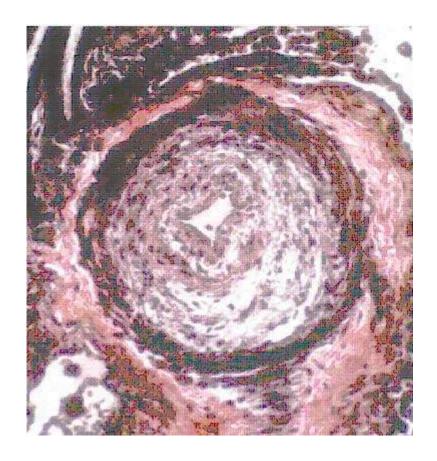

5. Pulmonary hypertension with unclear and/or multifactorial mechanisms

- 5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders, sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmonary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension

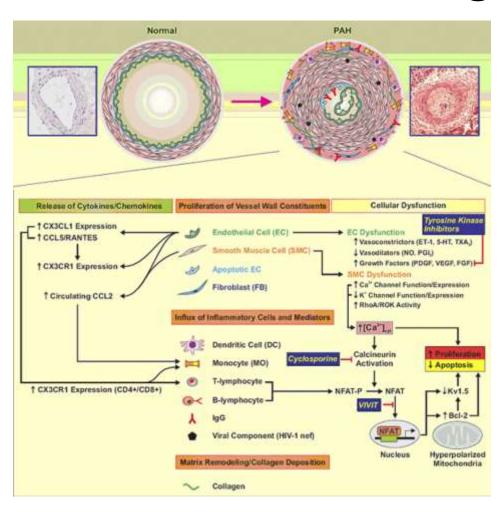
PH epidemiology

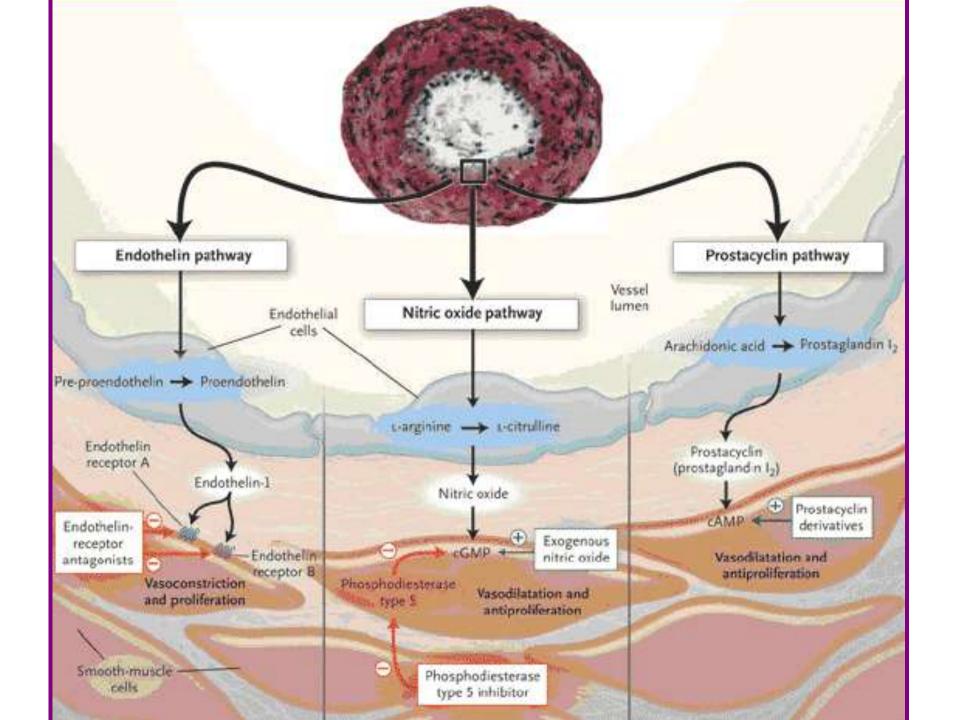
- In the UK, a prevalence of 97 cases per million with a female:-male ratio of 1.8 has been reported.
- The age-standardized death rate in the USA ranges between 4.5 and 12.3 per 100,000 population.

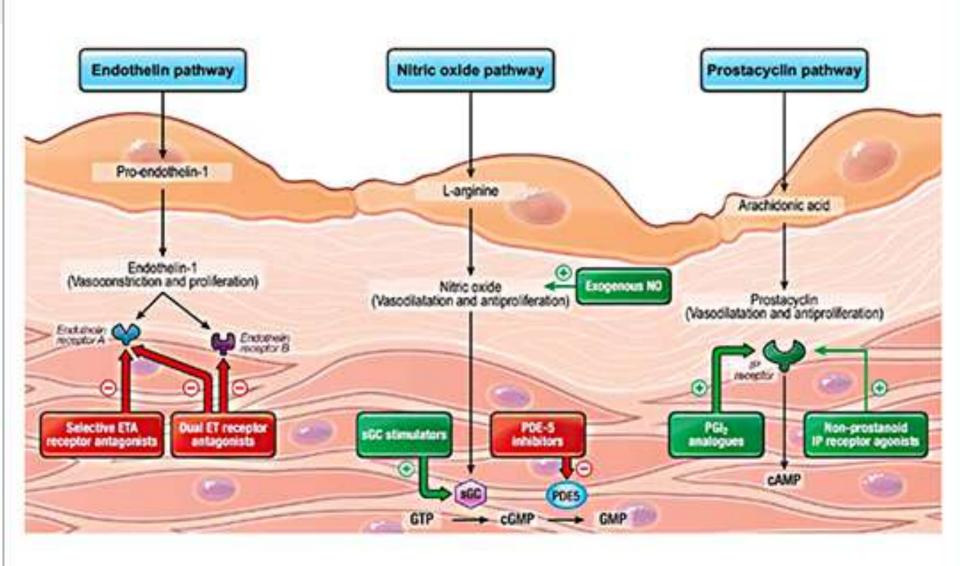
Progression of vascular disease



PAH pathology: The development of "plexiform lesions' is a pathologic hallmark of PAH.


Plexiform lesion


Occlusion of pulmonary artery



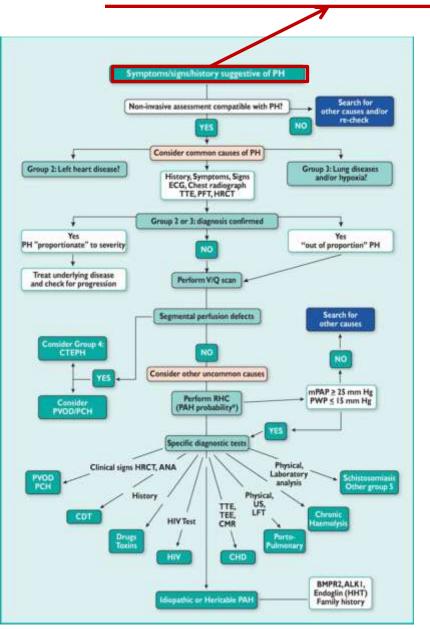
Mechanisms of Inflammation-Mediated Remodeling

Endothelial Dysfunction in PAH

Humbert M, et al. Circulation 2014;130:2189-2208.

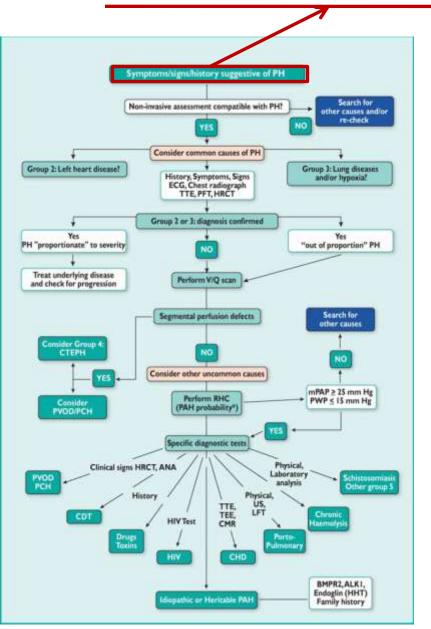
Therapy	Clinical trial identifier	Clinical trial design	Primary end-points	Treatment duration	Status (October 2016)
Therapies targeting inflammation and immunity			1024001		
Ubenimex	NCT02664558	Phase II, multicentre, randomised, double-blind, placebo-controlled trial in PAH patients	Change in PVR	24 weeks	Recruiting [17]
	NCT02736149	Phase II, open-label, multicentre, extension study in PAH patients	Frequency of adverse events	~1 year	Not yet recruiting [18]
Rituximab	NCT01086540	Phase II, randomised, double-blind, placebo-controlled trial in PAH-SSc patients	Change in PVR	24 weeks	Recruiting [19]
Tocilizumab	NCT02676947	Phase II, open-label trial in PAH patients	Incidence and severity of adverse events; change in PVR	6 months	Recruiting [20]
Therapies targeting mitochondrial					
dysfunction Bardoxolone methyl	NCT02036970	Phase II, double-blind, randomised, interventional trial in pulmonary hypertension Group I, II or V patients	Change in 6MWD	16 weeks	Preliminary results published [21]
	NCT02657356	Phase III, double-blind, early interventional trial in PAH-CTD patients	Change in 6MWD	24 weeks	Recruiting [22]
GS-4997	NCT02234141	Phase II, dose-ranging, randomised, double-blind, placebo-controlled trial in PAH patients	Change in PVR	24 weeks	Ongoing, not recruiting [23]
Therapies targeting BMPR2					
signalling Tacrolimus	NCT01647945	Phase II, double-blind, randomised trial in PAH patients	Frequency of adverse events	16 weeks	Terminated due to limited funding/slow patient recruitment; follow-up multicentre phase IIb efficacy trial planned [24]
Therapies targeting iron deficiency Ferinject (ferric carboxymaltose)	NCT01447628	Phase II, double-blind, randomised, interventional trial in IPAH, HPAH and anorexigen-associated PAH patients	Change in PVR and exercise capacity	24 weeks	Recruiting [25]
	NCT01847352	Single-blind, nonrandomised, interventional, trial in healthy volunteers who met iron-deficient or iron-replete criteria	Change in PASP following i.v. iron infusion	1 week	Completed: April 2014 [26, 27]
Ferrous sulfate (oral dietary iron supplement)	NCT01446848	Interventional, open-label study in IPAH patients with iron deficiency	Change in zinc protoporphyrin level; change in serum ferritin level	12 weeks	Completed: August 2014 [28]
Pulmonary artery denervation Pulmonary arterial denervation procedure	chiCTR-ONC-12002085	Phase II, observational, unblinded, nonrandomised study in PAH and PAH-CTD patients	Change in PASP and 6MWD	24 weeks	Completed: April 2014 [29]
	NCT02525926	Single-blind, randomised, interventional efficacy study in PAH patients	Mean pulmonary artery pressure	²⁶ Simonne	au, ERR, 2016

2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension


The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the **European Respiratory Society (ERS)**

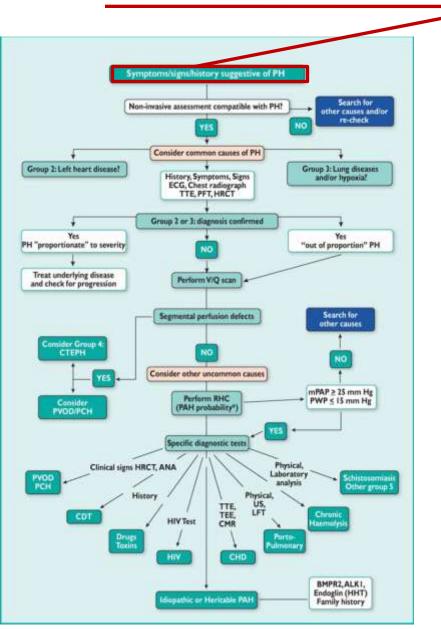
Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT)

Authors/Task Force Members: Nazzareno Galiè* (ESC Chairperson) (Italy), Marc Humbert*a (ERS Chairperson) (France), Jean-Luc Vachieryc (Belgium), Simon Gibbs (UK), Irene Lang (Austria), Adam Torbicki (Poland), Gérald Simonneaua (France), Andrew Peacocka (UK), Anton Vonk Noordegraafa (The Netherlands), Maurice Beghettib (Switzerland), Ardeschir Ghofrania (Germany), Miguel Angel Gomez Sanchez (Spain), Georg Hansmann^b (Germany), Walter Klepetko^c (Austria), Patrizio Lancellotti (Belgium), Marco Matuccid (Italy), Theresa McDonagh (UK), Luc A. Pierard (Belgium), Pedro T. Trindade (Switzerland), Maurizio Zompatorie (Italy) and Marius Hoepera (Germany)


Diagnostic approach

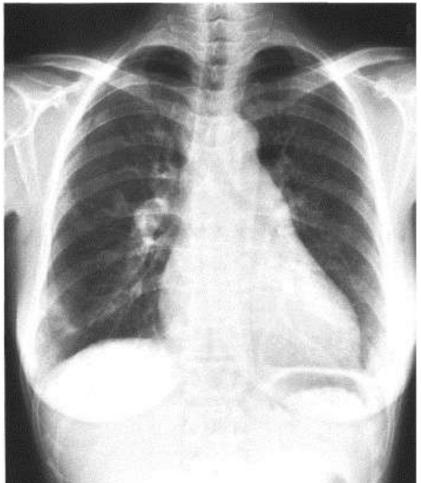
- Suspicion
- Detection
- Identification
- Classification

- Exertional dyspnea
- Chest pain
- Syncope
- Peripheral edema
- Raynaud


ESC/ERS GUIDELINES

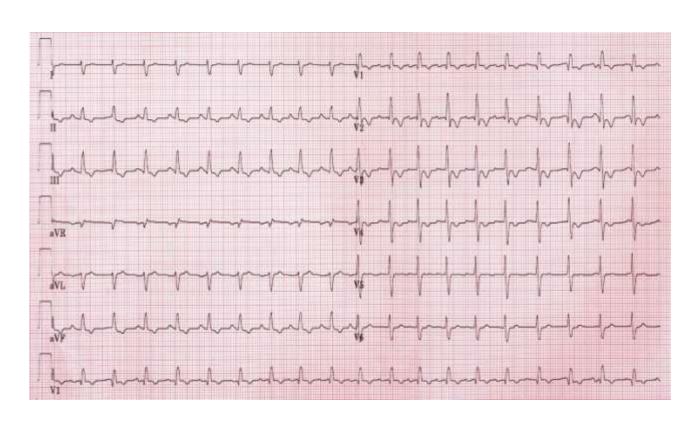
- Exertional dyspnea
- Chest pain
- Syncope
- Peripheral edema
- Raynaud


2 years delay

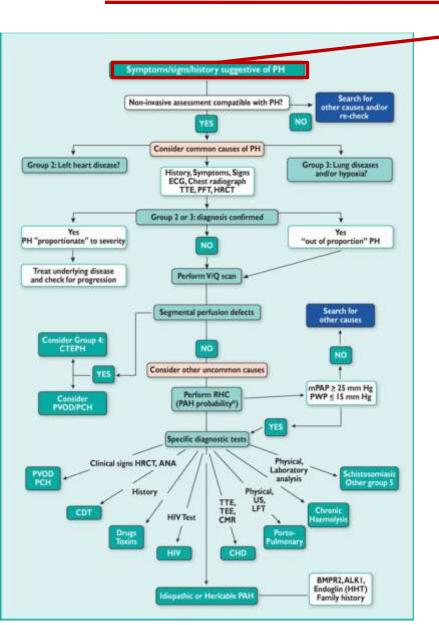

ESC/ERS GUIDELINES

- Physical examination
- Chest X-Ray
- ECG

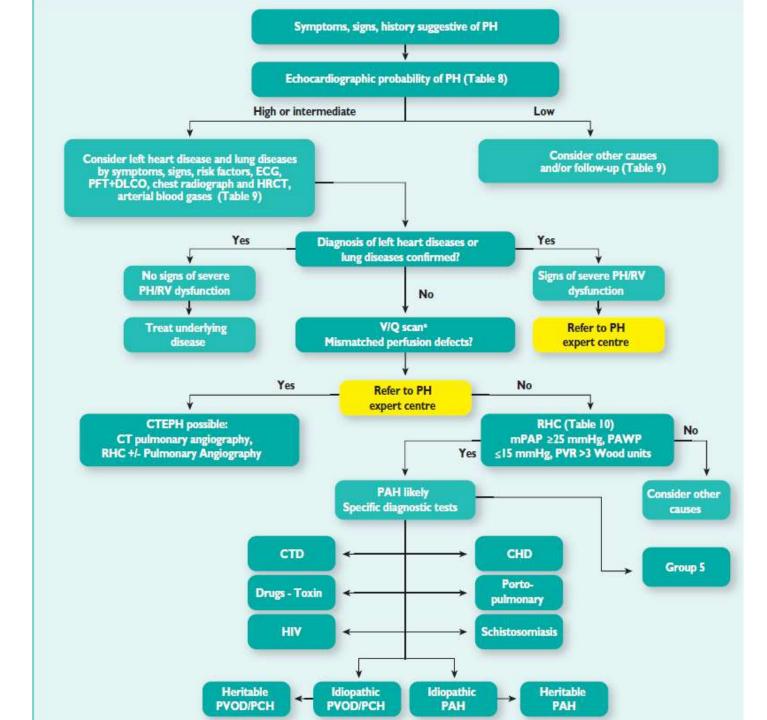
ESC/ERS GUIDELINES

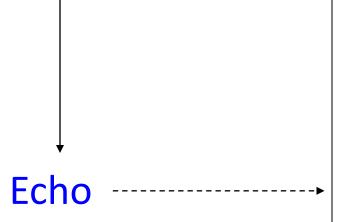


ECG


Often misinterpreted

Normal in one third of the patients


Does not parallel hemodynamics


With permission of Prof. Ewert

- Family history
- Connective tissue disease
- Congenital heart disease
- Portal hypertension
- Venous thromboembolism/PE
- Anorexiogen use
- HIV

PAH suspicion?

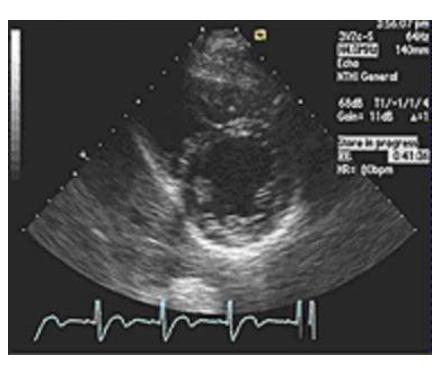
RV assessment

TR Velocity >>>RVSP

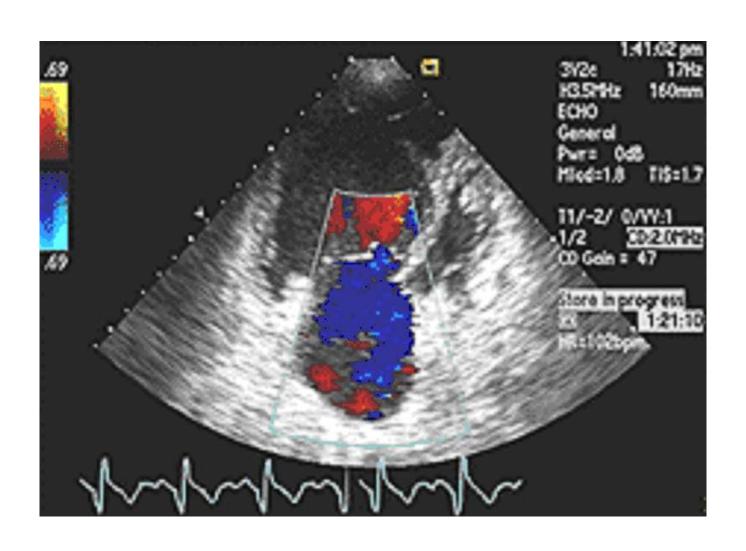
•RAE, RVE, RV dysfunction

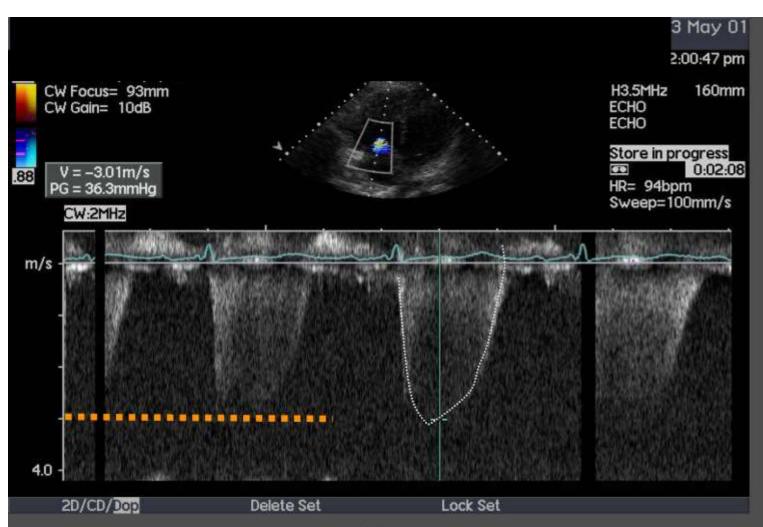
LV assessment

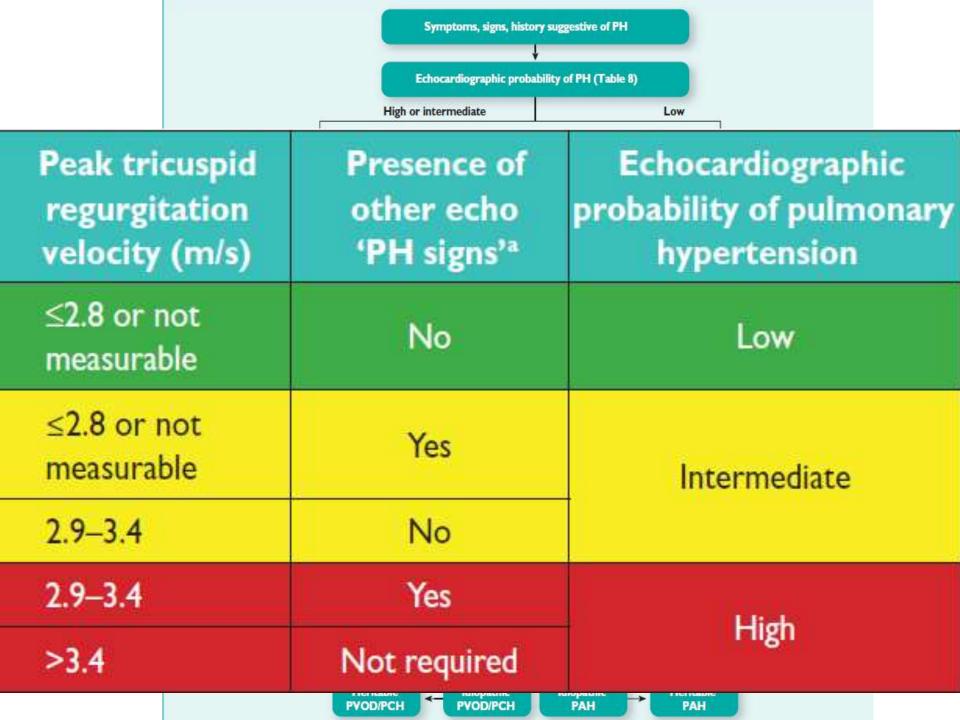
R/o congenital HD


Apical 4-chamber

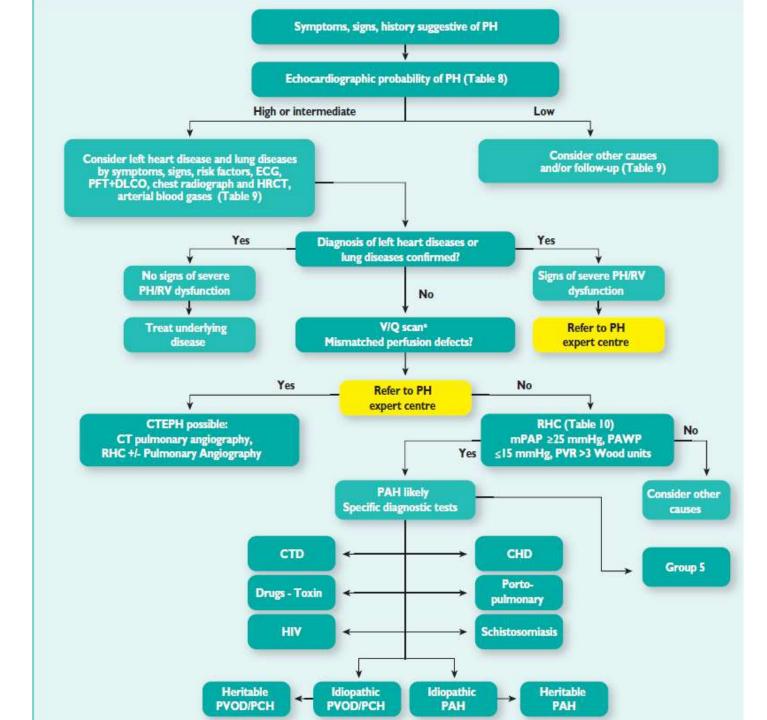
Normal PAH

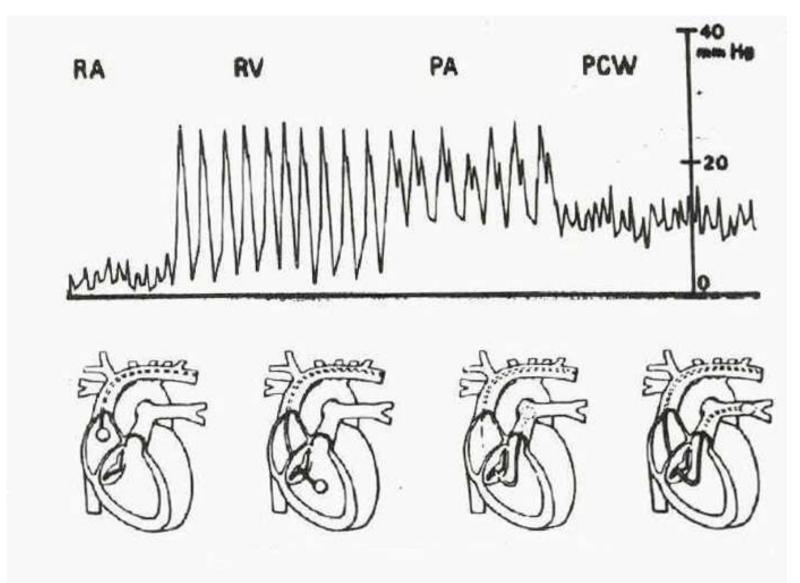

Parasternal short axis

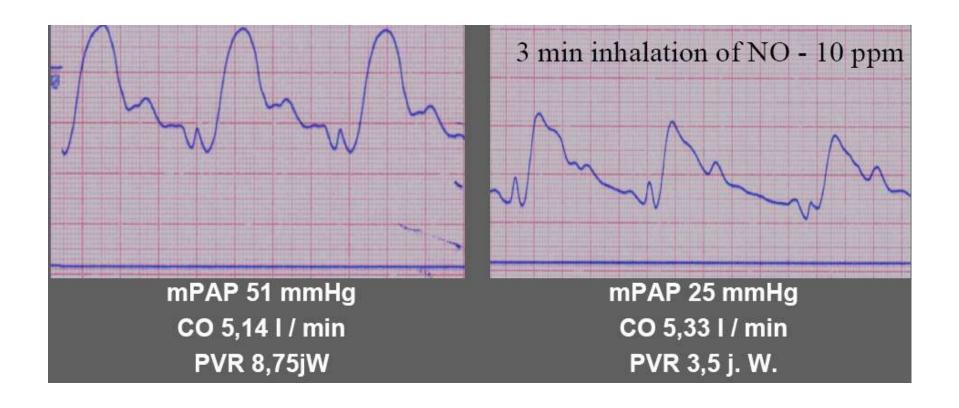



Normal PAH

Tricuspid Regurgitation


Tricuspid insufficiency Vmax
TI Pressure Gradient = 4 Vmax²
PASP = 4 x Vmax² + RAP(est)


A: The ventricles ^a	B: Pulmonary artery ^a	C: Inferior vena cava and right atrium ^a	
Right ventricle/ left ventricle basal diameter ratio > 1.0	Right ventricular outflow Doppler acceleration time <105 msec and/or midsystolic notching	Inferior cava diameter >21 mm with decreased inspiratory collapse (<50 % with a sniff or <20 % with quiet inspiration)	ry
Flattening of the interventricular septum (left ventricular eccentricity index	Early diastolic pulmonary regurgitation velocity >2.2 m/sec	Right atrial area (end-systole) > 18 cm ²	
>1.1 in systole and/or diastole)	PA diameter >25 mm.		


Diagnostic management

Echocardiographic probability of PH	Without risk factors or associated condition for PAH or CTEPH ^d	Class*	Levelb	With risk factors or associated conditions for PAH or CTEPH ^c	Classª	Level ^b
Low	Alternative diagnosis should be considered	lla	С	Echo follow-up should be considered	lla	С
Intermediate	Alternative diagnosis, echo follow-up, should be considered	lla	c	Further assessment of PH including	lla	В
intermediate	Further investigation of PH may be considered ^e	ПР		RHC should be considered ^e	IId	•
High	Further investigation of PH (including RHC°) is recommended	1	Further investigation of PHe including RHC is recommended		Ţ	C

Right heart catheterization

Evaluation of right heart size and function

- Echo is the mainstay for right heart evaluation in routine clinical practice
- However, MRI is the most accurate method for evaluating RV mass, RV volume, RVEF
- In addition MRI can quantify:
 - Regurgitant volumes
 - Delayed enhancement (focal scars)
 - Myocardial strain, coronary perfusion, pulmonary pulsatility
- RVEF and TAPSE are markers of ventriculo-arterial coupling, rather than ventricular contractility

Diagnostic – work up

- Suspicion
- Detection
- Identification
- Assessment-Classification

NYHA Functional Class

Class

Class I (Mild)

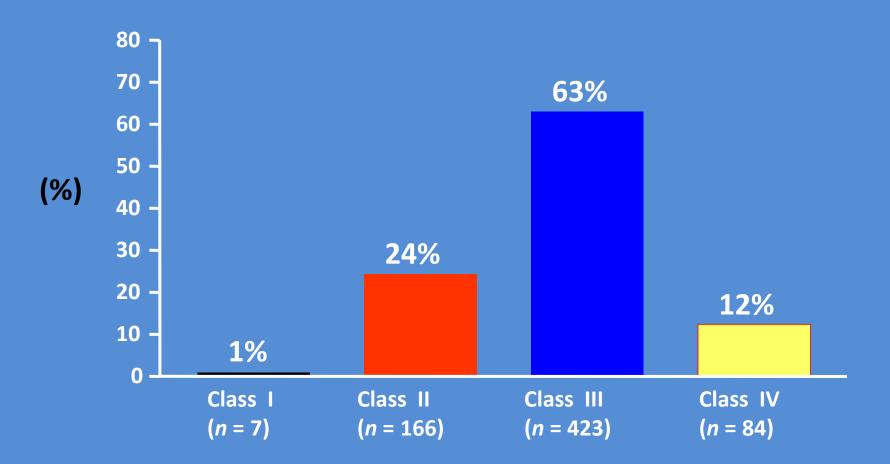
Patient Symptoms

No limitation of physical activity. Ordinary physical activity does <u>not cause undue symptoms</u>

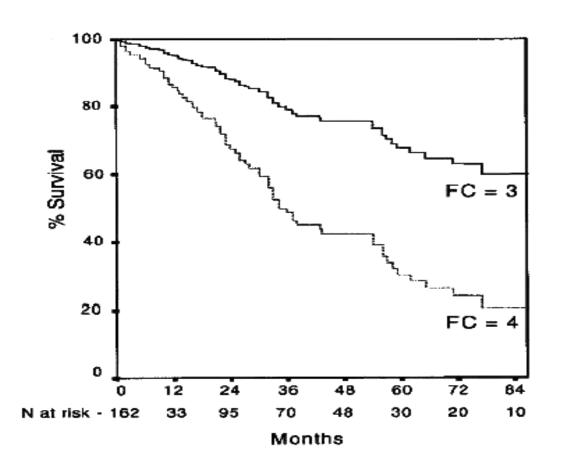
Class II (Mild)

Slight limitation of physical activity. Comfortable at rest, <u>ordinary physical activity</u> results in symptoms.

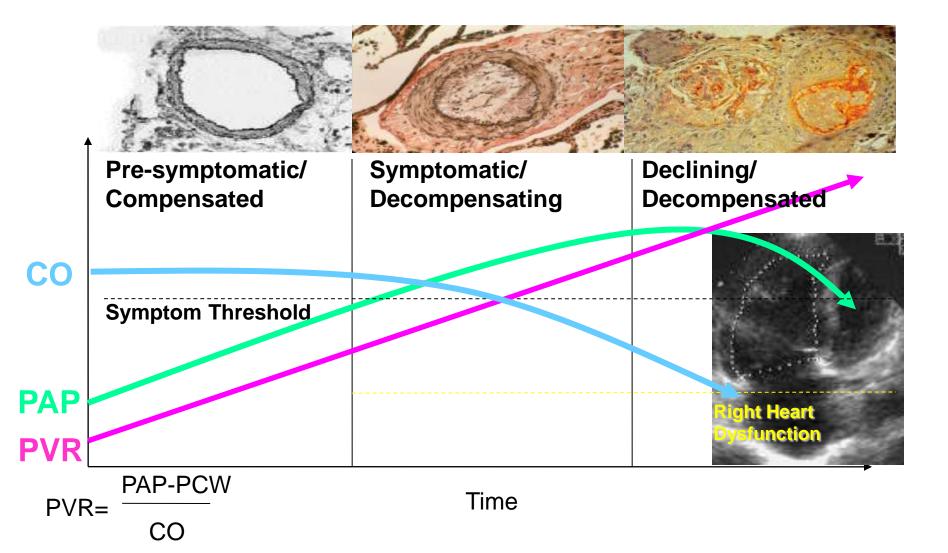
Class III (Moderate)


Marked limitation of physical activity.
Comfortable at rest, but <u>less than ordinary activity</u> causes symptoms.

Class IV (Severe) Symptoms of cardiac insufficiency at



<u>rest</u>. If any physical activity is undertaken, discomfort is increased.


NYHA functional class at diagnosis

Severity of PAH: NYHA Functional Class (Predictor of survival in PAH)

Schematic Progression of PAH

Determinants of prognosis ^a	Low risk	Intermediate risk	High risk
(estimated I-year mortality)	<5%	5-10%	>10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	1,11	III	IV
6MWD	>440 m	165-440 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg	Peak VO ₂	Peak VO ₂ < 11 ml/min/kg
	(>65 % pred.)	11–15 ml/min/kg (35–65% pred.)	(<35 % pred.)
	VE/VCO ₂ slope <36	VE/VCO ₂ slope 36–44.9	VE/VCO ₂ ≥45
NT-proBNP plasma levels	BNP <50 ng/l	BNP 50-300 ng/l	BNP >300 ng/l
	NT-proBNP <300 ng/ml	NT-proBNP 300-1400 ng/l	NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm²	RA area 18–26 cm²	RA area >26 cm ²
	No pericardial effusion	No or minimal, pericardial effusion	Pericardial effusion
Haemodynamics	RAP <8 mmHg	RAP 8–14 mmHg	RAP > 14 mmHg
	CI ≥2.5 l/min/m²	CI 2.0–2.4 l/min/m²	C1 < 2.0 l/min/m ²
	SvO ₂ >65 %	SyO ₂ 60–65%	SvO ₂ < 60 %

^aMost of the proposed variables and cut-off values are based on expert opinion.

^bOccasional syncope during brisk or heavy exercise, or occasional orthostatic syncope in an otherwise stable patient.

^cRepeated episodes of syncope, even with little or regular physical activity.

Determinants of prognosis ^a (estimated I-year mortality)	Low risk	Intermediate risk	High risk
	<5%	5–10%	>10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	1,11	III	IV
6MWD	>440 m	165-440 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg	Peak VO ₂	Peak VO ₂ < 1.1 ml/min/kg
	(>65 % pred.)	11-15 ml/min/kg (35-65% pred.)	(<35 % pred.)
	VE/VCO ₂ slope <36	VE/VCO ₂ slope 36-44.9	VE/VCO ₂ ≥45
NT-proBNP plasma levels	BNP <50 ng/l	BNP 50-300 ng/l	BNP >300 ng/l
	NT-proBNP <300 ng/ml	NT-proBNP 300-1400 ng/l	NT-proBNP >1400 ng/l
maging (echocardiography, CMR imaging)	RA area <18 cm²	RA area 18–26 cm²	RA area >26 cm²
	No pericardial effusion	No or minimal, pericardial effusion	Pericardial effusion
Haemodynamics	RAP <8 mmHg	RAP 8-14 mmHg	RAP > 14 mmHg
	CI ≥2.5 l/min/m²	CI 2.0-2.4 l/min/m ²	CI <2.0 l/min/m ²
	SvO ₂ >65 %	SvO ₂ 60-65%	SvO ₂ <60 %

^aMost of the proposed variables and cut-off values are based on expert opinion.

^bOccasional syncope during brisk or heavy exercise, or occasional orthostatic syncope in an otherwise stable patient.

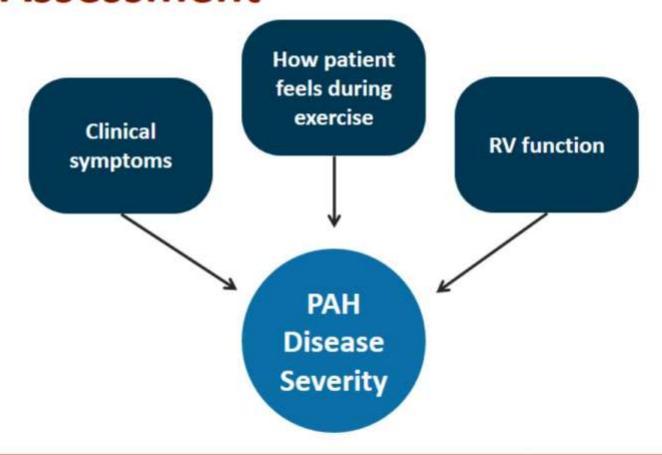
^cRepeated episodes of syncope, even with little or regular physical activity.

Determinants of prognosis* (estimated I-year mortality)	Low risk	Intermediate risk	High risk
	<5%	5–10%	>10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	1,11	III	IV
6MWD	>440 m	165-440 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg	Peak VO ₂	Peak VO ₂ < 11 ml/min/kg
	(>65 % pred.)	11-15 ml/min/kg (35-65% pred.)	(<35 % pred.)
	VE/VCO ₂ slope <36	VE/VCO ₂ slope 36-44.9	VE/VCO ₂ ≥45
NT-proBNP plasma levels	BNP <50 ng/l	BNP 50-300 ng/l	BNP >300 ng/l
	NT-proBNP <300 ng/ml	NT-proBNP 300-1400 ng/l	NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm²	RA area 18–26 cm²	RA area >26 cm ²
	No pericardial effusion	No or minimal, pericardial effusion	Pericardial effusion
Haemodynamics	RAP <8 mmHg	RAP 8-14 mmHg	RAP > 14 mmHg
	CI ≥2.5 l/min/m²	CI 2.0-2.4 l/min/m ²	C1 <2.0 l/min/m ²
	SvO ₂ >65 %	SvO ₂ 60-65%	SvO ₂ <60 %

^aMost of the proposed variables and cut-off values are based on expert opinion.

^bOccasional syncope during brisk or heavy exercise, or occasional orthostatic syncope in an otherwise stable patient.

^cRepeated episodes of syncope, even with little or regular physical activity.


Determinants of prognosis ^a	Low risk	Intermediate risk	High risk
(estimated I-year mortality)	<5%	5-10%	>10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	1,11	III	IV
6MWD	>440 m	165-440 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg	Peak VO ₂	Peak VO ₂ < 11 ml/min/kg
	(>65 % pred.)	11–15 ml/min/kg (35–65% pred.)	(<35 % pred.)
	VE/VCO ₂ slope <36	VE/VCO ₂ slope 36–44.9	VE/VCO ₂ ≥45
NT-proBNP plasma levels	BNP <50 ng/l	BNP 50-300 ng/l	BNP >300 ng/l
	NT-proBNP <300 ng/ml	NT-proBNP 300-1400 ng/l	NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm²	RA area 18–26 cm²	RA area >26 cm ²
	No pericardial effusion	No or minimal, pericardial effusion	Pericardial effusion
Haemodynamics	RAP <8 mmHg	RAP 8–14 mmHg	RAP > 14 mmHg
	CI ≥2.5 l/min/m²	CI 2.0–2.4 l/min/m ²	CI <2.0 l/min/m ²
	SvO ₂ >65 %	SvO ₂ 60–65%	SvO ₂ <60 %

^aMost of the proposed variables and cut-off values are based on expert opinion.

^bOccasional syncope during brisk or heavy exercise, or occasional orthostatic syncope in an otherwise stable patient.

^cRepeated episodes of syncope, even with little or regular physical activity.

Components of a Comprehensive Risk Assessment

It is important to be comprehensive and use all components of the risk assessment to determine disease severity.

Definition of Patient Status

- In many cases, all of the variables that determine a patient's status will fall into different risk categories (ie, low, intermediate, or high)
 - It is the overall assessment that should drive therapeutic decisions

Raising the bar on treatment goals

Table 1

Variables Used in Clinical Practice to Determine Response to Therapy and Prognosis in Patients With PAH

Functional class

I or II

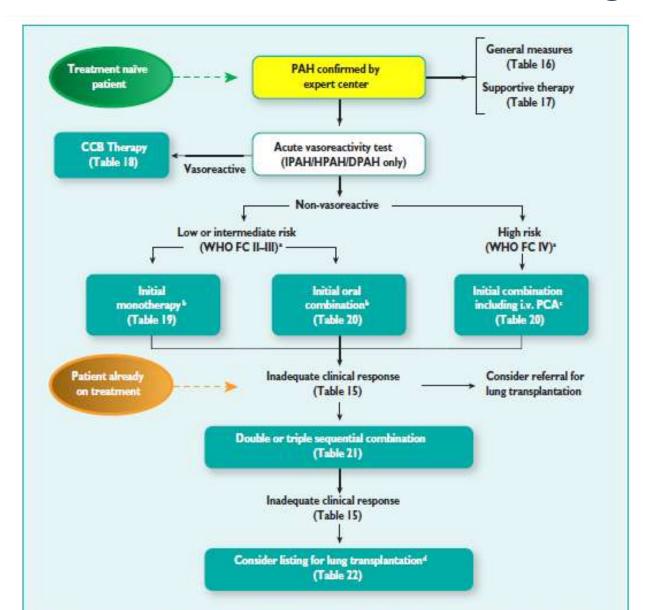
Echocardiography/CMR

Normal/near-normal RV size and function

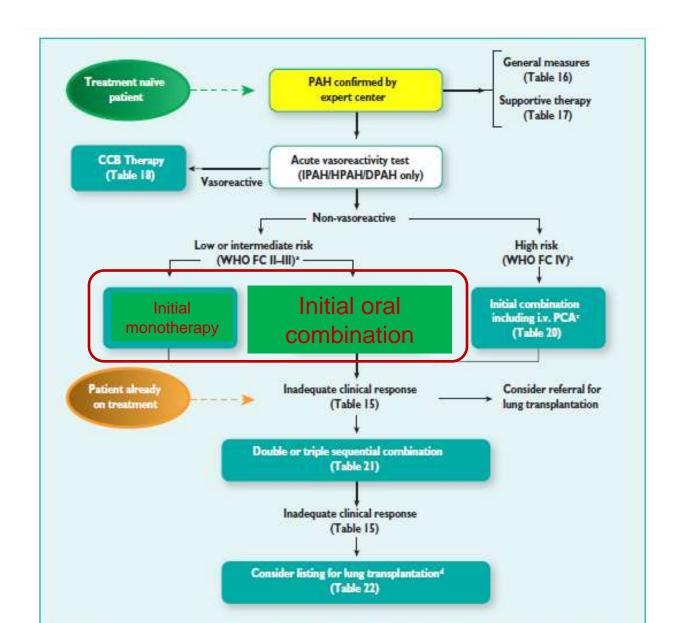
Hemodynamics

Normalization of RV function (RAP < 8 mm Hg and Cl > 2.5 to 3.0 l/min/m²)

6-min walk distance


>380 to 440 m; may not be aggressive enough in young individuals

Cardiopulmonary exercise testing

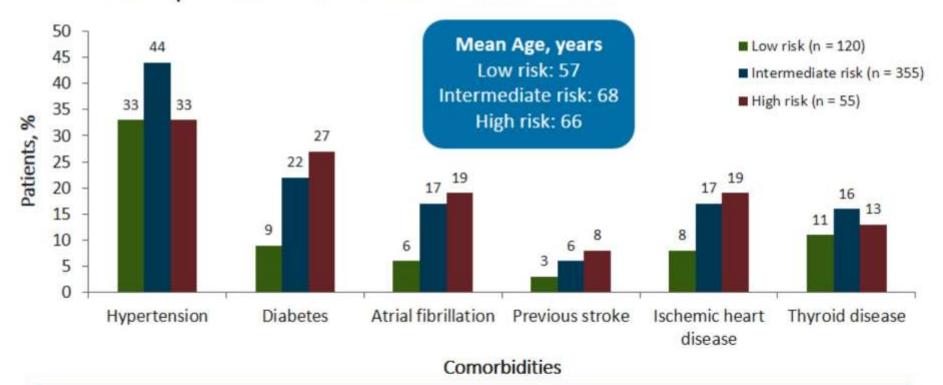

Peak VO₂ >15 ml/min/kg and EqCO₂ <45 l/min/l/min

B-type natriuretic peptide level

Normal

Monotherapy Is Frequently Inadequate

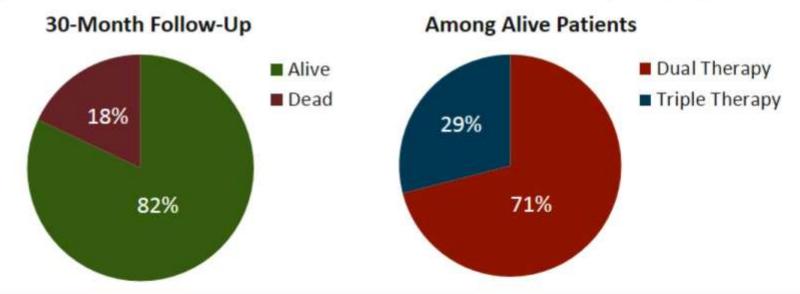
 Retrospective analysis of medical records of patients with PAH at Skåne University Hospital 2000 to 2011


Patient Who Started and Remained on Monotherapy

1-Year Survival 58% 2-Year Survival 41%

3-Year Survival 24%

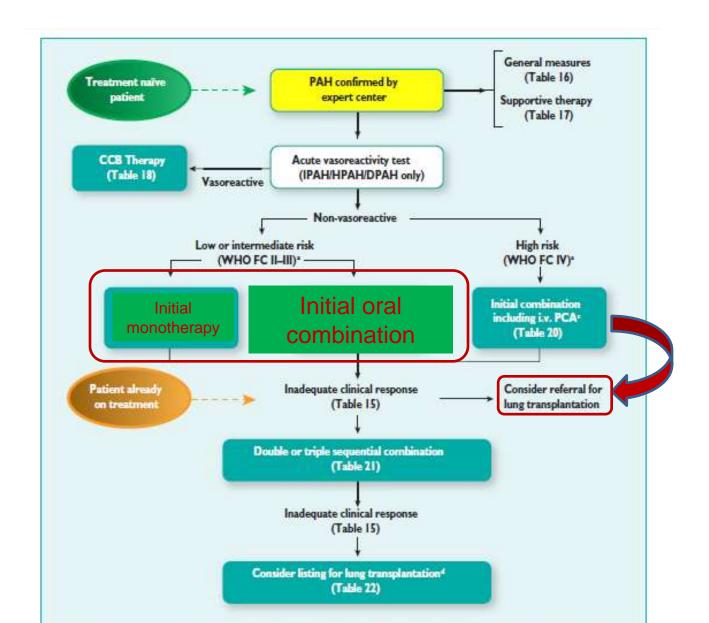
PAH Population Is Heterogeneous

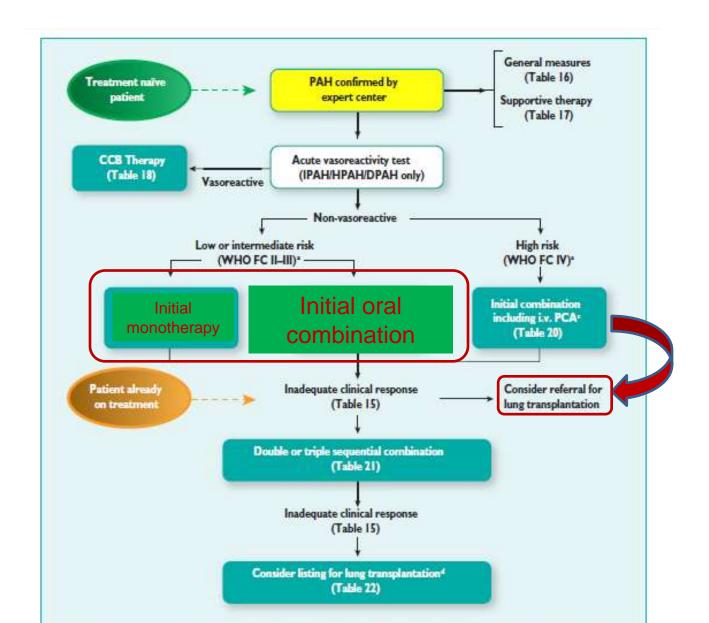

Baseline patient characteristics from SPAHR

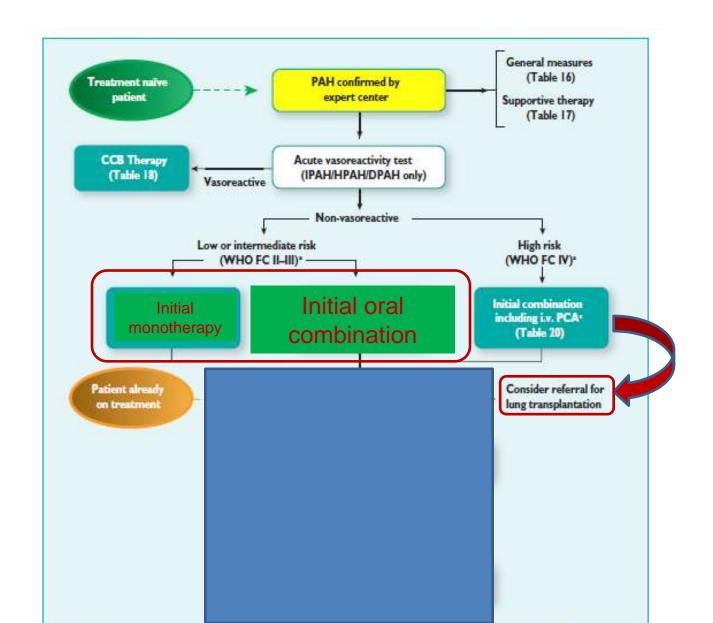
Aggressive initial therapy may not be possible in elderly patients with comorbidities as in younger patients without comorbidities

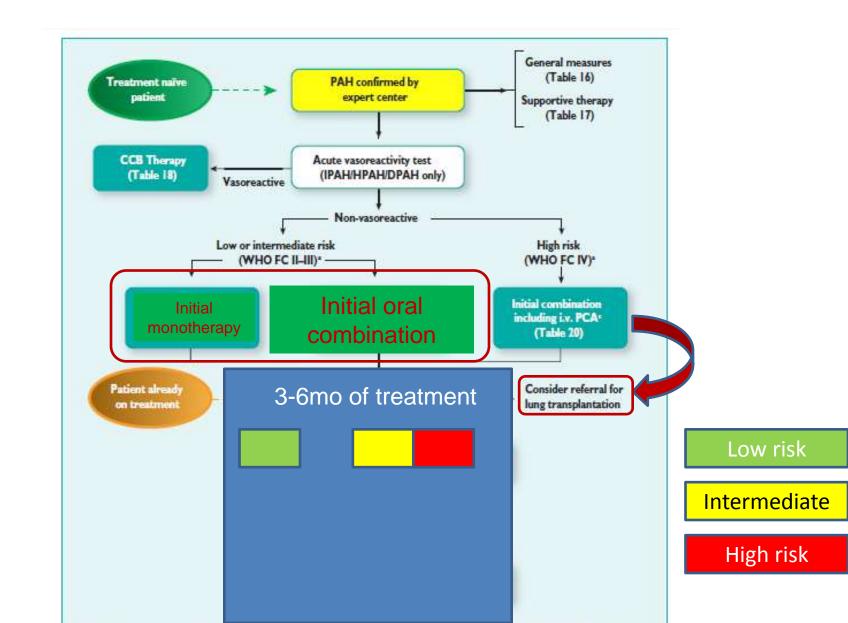
French PH Registry Early Combination Treatment Leads to Better Long-Term Survival

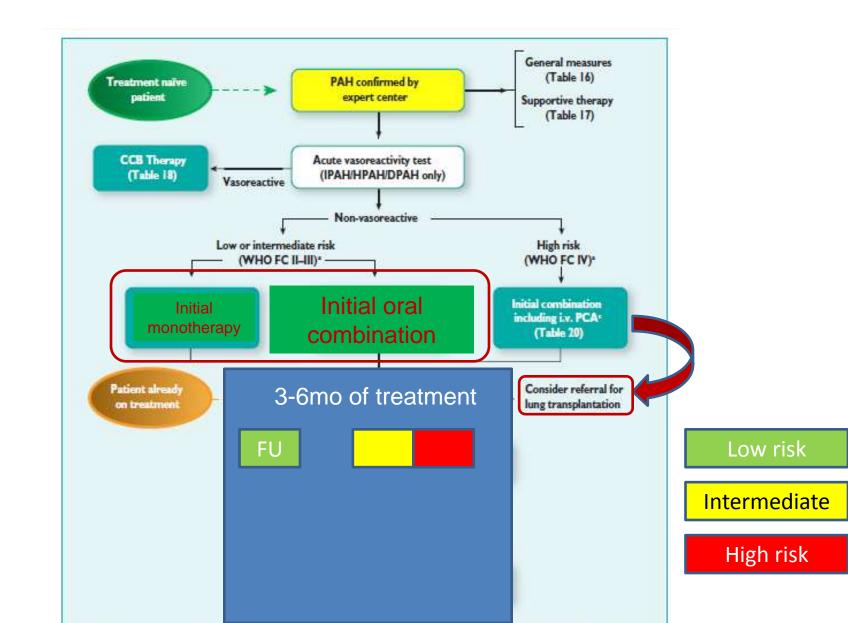
- 97 patients with newly diagnosed PAH (86% in NYHA FC III to IV)
- Enrolled between January 2007 and December 2013
- All patients treated with initial oral combination therapy with additional prostanoid treatment if condition deteriorated or inadequate response

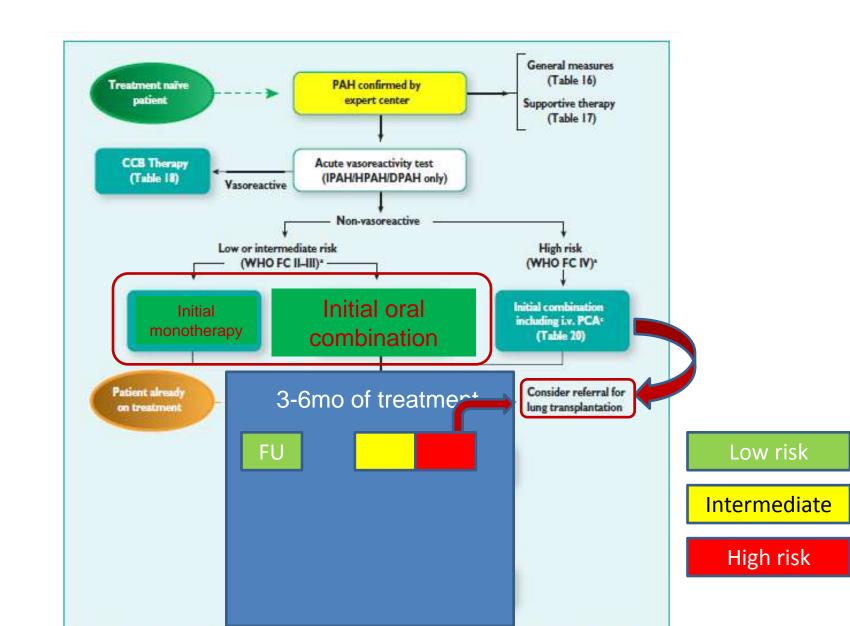


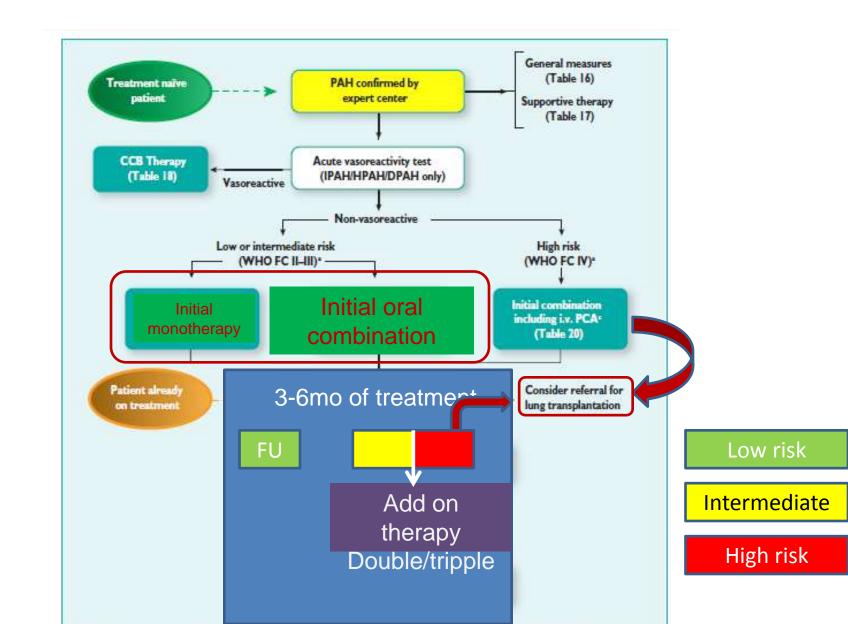

Shorter follow-up intervals are appropriate in patients who do not reach treatment goals

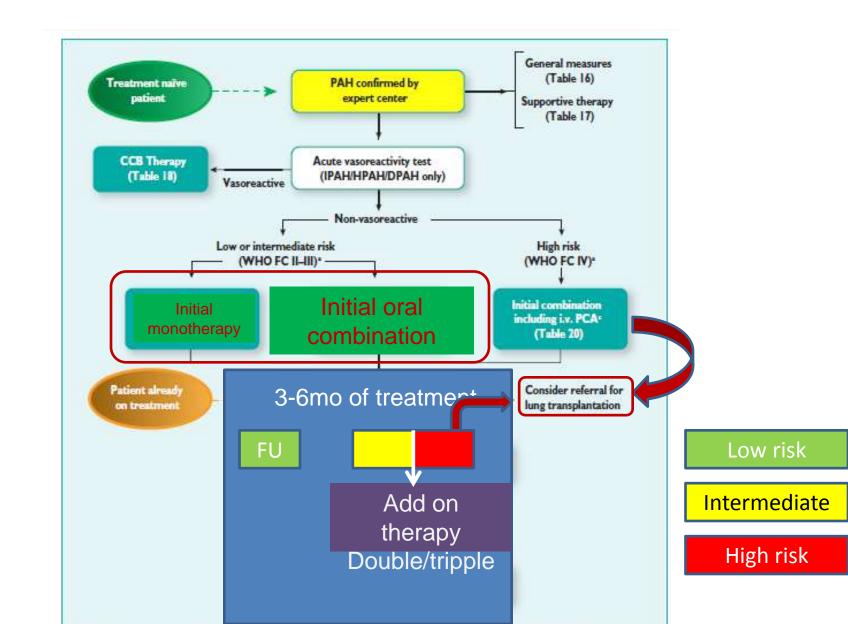

Pilot Study Initial Triple Combination Therapy

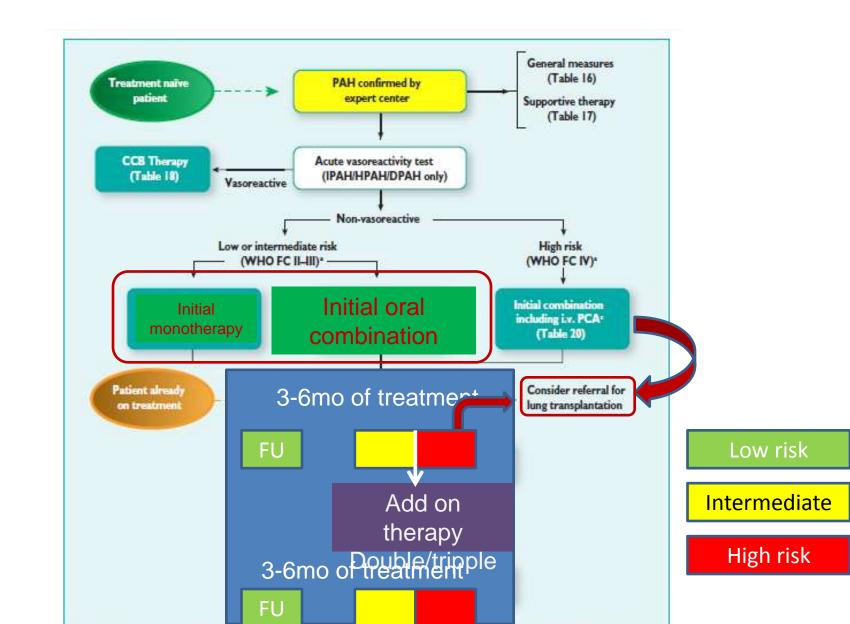

- Retrospective analysis of NYHA FC III/IV PAH* patients (N=19) admitted to French center
 - Severe hemodynamic impairment: CI <2.0 L/min/m² and/or mean RAP >20 mmHg and/or PVR ≥1000 dyn/s/cm⁵
 - Initiated on upfront triple combination therapy
 IV epoprostenol, bosentan, and sildenafil
 - Mean follow-up 41.2 months
- Resulted in improvements in FC, exercise capacity, cardiopulmonary hemodynamics, and survival prospects
 - Overall survival estimates were 100% and transplant-free survival estimates were 94% at 1, 2, and 3 years

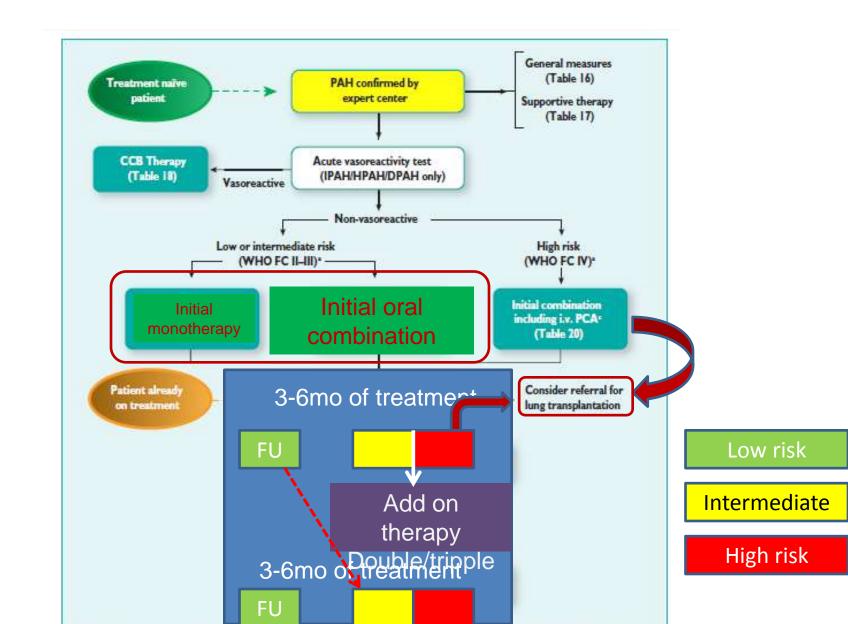

^{*}Idiopathic, heritable or anorexigen-associated PAH. Sitbon O, et al. Eur Respir J. 2014; 43:1691–1697.

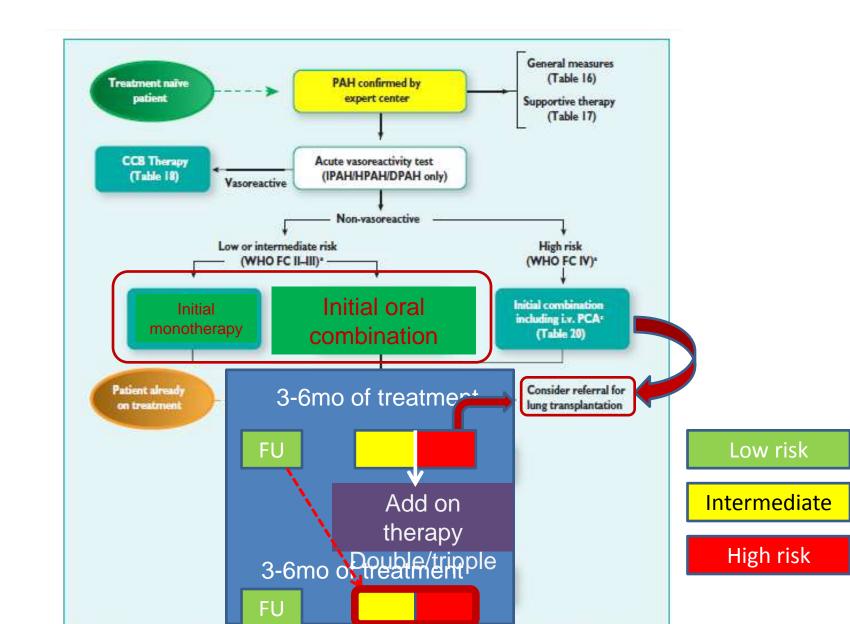


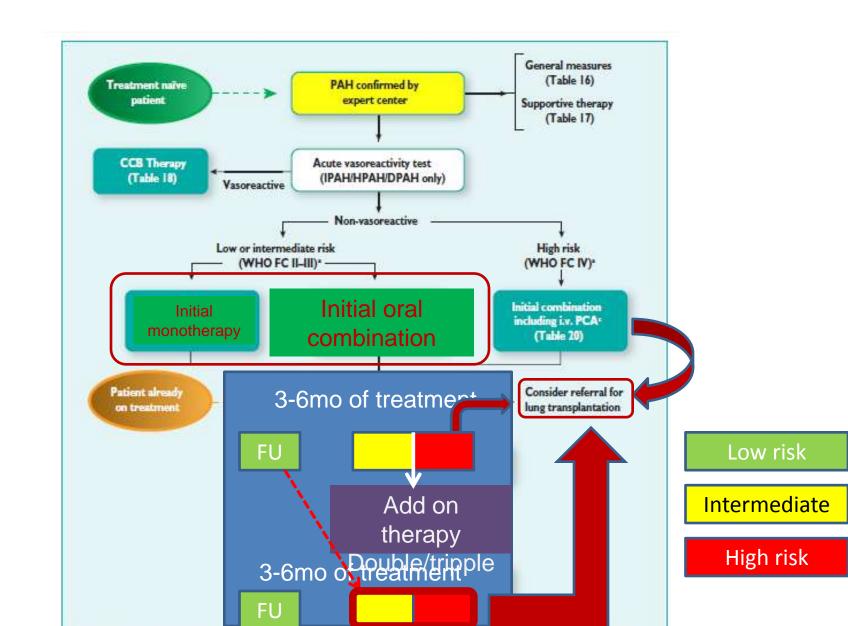


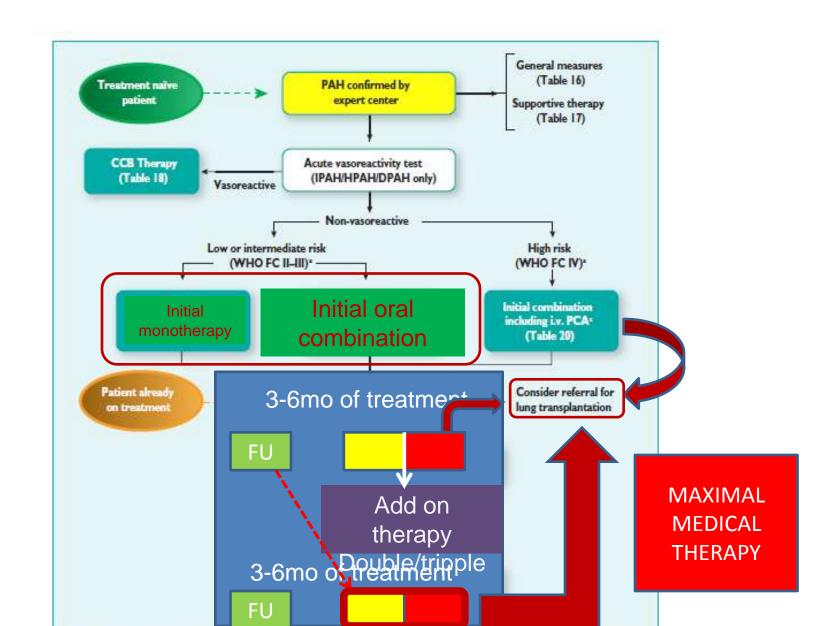




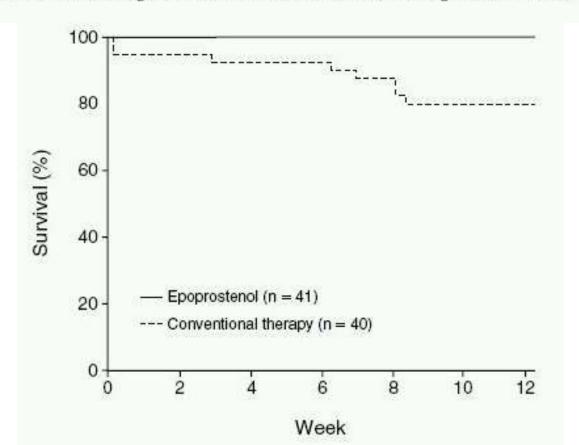








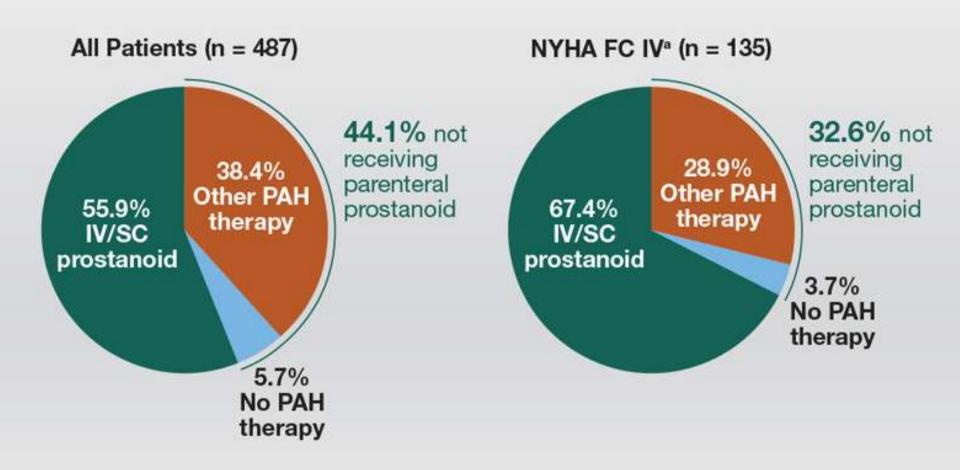
ESC/ERS GUIDELINES 2015. Treatment algorithm changes



ESC/ERS GUIDELINES 2015. Treatment algorithm changes

A COMPARISON OF CONTINUOUS INTRAVENOUS EPOPROSTENOL (PROSTACYCLIN) WITH CONVENTIONAL THERAPY FOR PRIMARY PULMONARY HYPERTENSION

Robyn J. Barst, M.D., Lewis J. Rubin, M.D., Walker A. Long, M.D., Michael D. McGoon, M.D., Stuart Rich, M.D., David B. Badesch, M.D., Bertron M. Groves, M.D., Victor F. Tapson, M.D., Robert C. Bourge, M.D., Bruce H. Brundage, M.D., Spencer K. Koerner, M.D., David Langleben, M.D., Cesar A. Keller, M.D., Srinivas Murali, M.D., Barry F. Uretsky, M.D., Linda M. Clayton, Pharm.D., Maria M. Jöbsis, B.A., Shelmer D. Blackburn, Jr., B.A., Denise Shortino, M.S., James W. Crow, Ph.D.,


Anticoagulation and Survival in Pulmonary Arterial Hypertension: Results From the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA)

Karen M. Olsson, Marion Delcroix, H. Ardeschir Ghofrani, Henning Tiede, Doerte Huscher, Rudolf Speich, Ekkehard Grünig, Gerd Staehler, Stephan Rosenkranz, Michael Halank, Matthias Held, Tobias J. Lange, Juergen Behr, Hans Klose, Martin Claussen, Ralf Ewert, Christian F. Opitz, C. Dario Vizza, Laura Scelsi, Anton Vonk-Noordegraaf, Harald Kaemmerer, J. Simon R. Gibbs, Gerry Coghlan, Joanna Pepke-Zaba, Uwe Schulz, Matthias Gorenflo, David Pittrow and Marius M. Hoeper

m. 2014;129:57-65; originally pub	olished online September 3 All PAH Patients	0, 2013; Patients Receiving	Patients Not Receiving Anticoagulants	
	n=1283	Anticoagulants n=738 (58%)	n=545 (42%)	P Value
Age, y (median, Q1-Q3)	68 (55-75)	70 (58-76)	66 (52-75)	0.00
Female, n (%)	819 (64%)	474 (64%)	345 (63%)	0.77
Diagnosis				
Idiopathic PAH	800 (62%)	528 (66%)	272 (34%)	< 0.00
Other forms of PAH*	483 (38%)	210 (43%)	273 (57%)	
Functional class, n (%)				
1/11	165 (13%)	75 (10%)	90 (17%)	< 0.00
III	934 (73%)	539 (73%)	395 (73%)	
IV	174 (14%)	120 (16%)	54 (10%)	
6MWD, m	303±132	293±127	317±138	0.003
Hemodynamics				
RAP, mm Hg	8.3±5.1	8.7±5.2	7.8±4.8	0.00
PAPm, mmHg	44±12	45±12	43±13	0.002
PAWP, mm Hg	9.5±3.4	9.7±3.5	9.3±3.4	0.06
CI, I/min/m ²	2.3±0.8	2.3±0.8	2.4±0.8	< 0.00
PVR, dyn s cm ⁻⁵	763±445	798±468	716±408	0.00
SvO ₂ (%)	63±9	62±9	65±8	< 0.00
Initial PAH treatment, n (%)†				
ERA	559 (44%)	309 (42%)	250 (46%)	0.16
PDE-5 inhibitors	738 (58%)	441 (60%)	297 (54%)	0.07
PCA	27 (2%)	18 (2%)	9 (2%)	0.43
Combination therapy during follow-up, n (%)	581 (45%)	389 (53%)	192 (35%)	<0.00

REVEAL: Use of Parenteral Prostanoids at Time of PAH-Related Death

Treatment at Time of PAH-Related Death

a Among patients assessed <6 months prior to death (n = 308), 135 (43.8%) were in NYHA FC IV.</p>

Determinants of prognosis ^a (estimated I-year mortality)	Low risk <5%	Intermediate risk 5–10%	High risk >10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	1,11	III	IV
6MWD	>440 m	165 -44 0 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ >15 ml/min/kg (>65% pred.) VE/VCO ₂ slope <36	Peak VO ₂ I I – I 5 ml/min/kg (35–65% pred.) VE/VCO ₂ slope 36–44.9	Peak VO2 < LL ml/min/kg (<35% pred.) VE/VCO2 ≥45
NT-proBNP plasma levels	BNP <50 ng/l NT-proBNP <300 ng/ml	BNP 50-300 ng/l NT-proBNP 300-1400 ng/l	BNP >300 ng/l NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm² No pericardial effusion	RA area 18–26 cm² No or minimal, pericardial effusion	RA area >26 cm² Pericardial effusion
Haemodynamics	RAP <8 mmHg CI ≥2.5 I/min/m² SvO ₂ >65%	RAP 8–14 mmHg CI 2.0–2.4 l/min/m² SvO ₂ 60–65%	RAP >14 mmHg CI <2.0 l/min/m² SvO ₂ <60%

Proposed Simpified Risk Stratification in PAH

Pro	ognostic Criteria	Low risk variables	Intermediate risk variables	High risk variables
A.	WHO FC	I, II	III	IV
В.	6MWT	>440m	165-440m	<165m
C.	BNP/NT-proBNP	BNP<50ng/L	BNP 50-300ng/L	BNP >300ng/L
	plama levels	NT-proBNP<300ng/L	NT-proBNP	NT-proBNP>1400ng/L
	OR	OR	300-1400ng/L	OR
	RAP	<8mmHg	8-14mmHg	>14mmHg
D.	Cl	>2.5L/min/m²	2-2.4L/min/m ²	<2L/min/m²
	OR	OR	OR	OR
	SvO2	>65%	60-65%	<60%

Proposed Simpified Risk Stratification in PAH

Low risk	Intermediate risk variables	High risk variables
At least 3 low	Definitions of	At least 2 high
risk criteria	high or low risk	risk criteria
and no high	criteria not	including CI or
risk criteria	fullfiled	SvO ₂

Table 4 Comprehensive clinical classification of pulmonary hypertension (updated from Simonneau et al. 5)

1. Pulmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
- 1.2.1 BMPR2 mutation
- 1.2.2 Other mutations
- 1.3 Drugs and toxins induced.
- 1.4 Associated with:
- 1.4.1 Connective tissue disease.
- 1.4.2 Human immunodeficiency virus (HIV) infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart disesse (Table 6)
- 1.45 Schistosomiasis

11. Pulmonary veno-occlusive disease and/or pulmonary capillary has mangiomatosis

- 1',1 Idiopathic
- 112 Heritable
- 1'.2.1 BF2AK4 mutation
- 1'.2.2 Other mutations
- 11.3 Drugs, toxins and radiation induced
- 1'.4 Associated with:
- 1'.4.1 Connective tissue disease
- 1'.4.2 HIV infection

1". Persistent pulmonary hypertension of the newborn

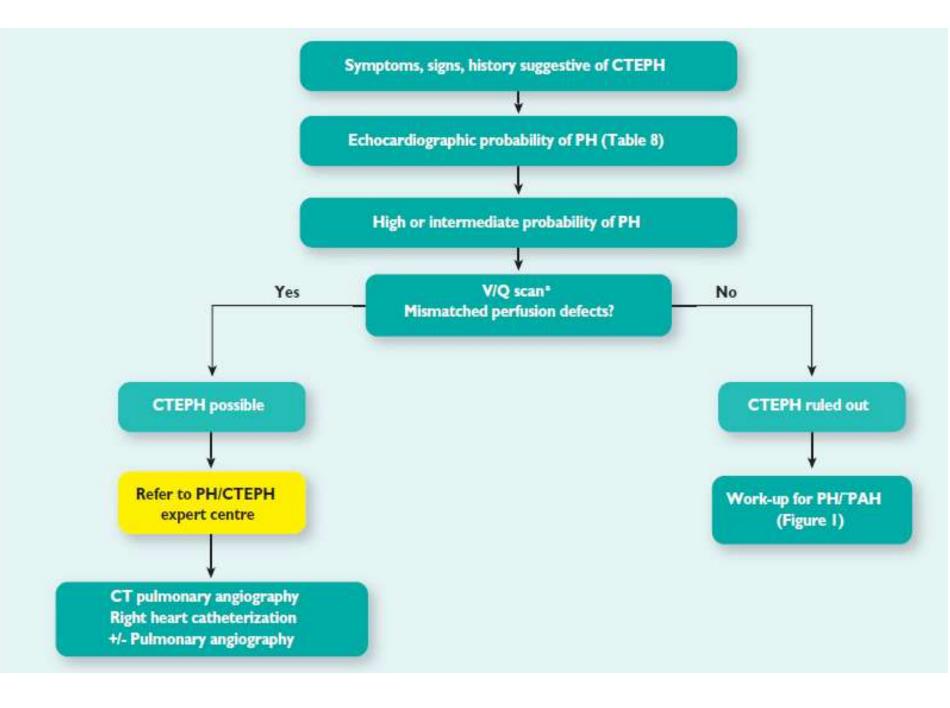
2. Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopethies
- 2.5 Congenital /acquired polmonary veins stenosis

Pulmonary hypertension due to lung diseases and/or hypoxia

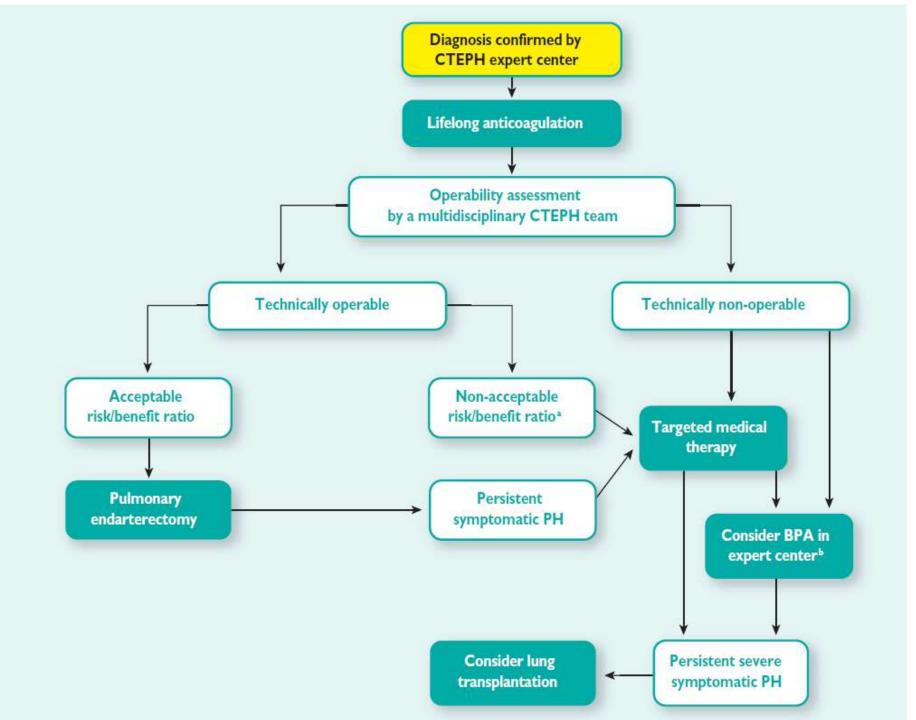
- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitul lung disease
- Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

Chronic thromboembolic pulmonary hypertunsion and action pulmonary artery obstructions

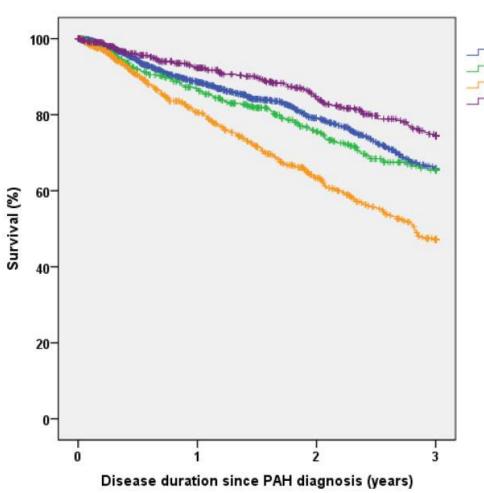

- 4.1 Chronic thromboembolic pulmonary hypertension.
- 42 Other pulmonary artary obstructions
- 4.2.1 Angiosarcoma
- 422 Other intravascular tumors
- 423 Arteritis
- 4.2.4 Congenital pulmonary arteries stenoses
- 4.2.5 Parasites (hydatidosis)

S. Pulmonary hypertension with unclear and/or

- Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- Systemic disorders, sarcoidosis, pulmonary histiocytosis.
 Iymphangioleiomyomatosis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmonary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dalysis), segmental pulmonary hypertension


4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions

- 4.1 Chronic thromboembolic pulmonary hypertension
- 4.2 Other pulmonary artery obstructions
 - 4.2.1 Angiosarcoma
 - 4.2.2 Other intravascular tumors
 - 4.2.3 Arteritis
 - 4.2.4 Congenital pulmonary arteries stenoses
 - 4.2.5 Parasites (hydatidosis)


Table 31 Management of pulmonary hypertension in left heart disease

Recommendations	Classa	Level ^b	Ref.c
Optimization of the treatment of the underlying condition is recommended before considering assessment of PH-LHD (i.e. treating structural heart disease)	JI.	В	396
It is recommended to identify other causes of PH (i.e. COPD, sleep apnoea syndrome, PE, CTEPH) and to treat them when appropriate before considering assessment of PH-LHD	1	G	396
It is recommended to perform invasive assessment of PH in patients on optimized volume status	1	G	
Patients with PH-LHD and a severe pre-capillary component as indicated by a high DPG and/or high PVR should be referred to an expert PH centre for a complete diagnostic workup and an individual treatment decision	lla	C	
The importance and role of vasoreactivity testing is not established in PH-LHD, except in patients who are candidates for heart transplantation and/or LV assist device implantation	ш	C	396
The use of PAH-approved therapies is not recommended in PH-LHD	111	C	396

Table 33 Recommendations for pulmonary hypertension due to lung diseases

Recommendations	Classa	Level ^b	Ref.c
Echocardiography is recommended for the non-invasive diagnostic assessment of suspected PH in patients with lung disease	į	C	403, 405
Referral to an expert centre is recommended in patients with echocardiographic signs of severe PH and/or severe right ventricular dysfunction	1	С	
The optimal treatment of the underlying lung disease, including long-term O ₂ therapy in patients with chronic hypoxaemia, is recommended in patients with PH due to lung diseases	1	С	169
Referral to PH expert center should be considered for patients with signs of severe PH/severe RV failure for individual-based treatment	lla	C	
RHC is not recommended for suspected PH in patients with lung disease, unless therapeutic consequences are to be expected (e.g. lung transplantation, alternative diagnoses such as PAH or CTEPH, potential enrolment in a clinical trial)	ш	С	169
The use of drugs approved for PAH is not recommended in patients with PH due to lung diseases	ш	е	411– 416

Survival of PAH vs Non-PAH patients

[¬] PAH
¬LHD-PH
Lung-PH
CTEPH
OILIII

Number of cases							
Year PAH LHD Lung- CTEP							
0	1,495	528	733	541			
1	914	336	446	361			
2	615	212	269	251			
3	403	124	142	158			

Survival after diagnosis						
Year	СТЕРН					
1	88.6%	86.7%	80.5%	92.3%		
2	79.1%	75.5%	63.4%	84.1%		
3	65.7%	65.5%	47.1%	74.4%		

Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

VOL. 68, NO. 4, 2016 ISSN 0735-1097

doi.org/10.1016/j.jacc.2016.05.047

A Pathophysiological Continuum

Christian F. Opitz, MD, ^{cb} Marius M. Hoeper, MD, ^c J. Simon R. Gibbs, MD, ^d Harald Kaemmerer, MD, VMD, ^e
Joanna Pepke-Zaba, MD, ^f J. Gerry Coghlan, MD, ^h Laura Scelsi, MD, ^h Michele D'Alto, MD, ^c Karen M. Olsson, MD, ^c
Silvia Ulrich, MD, ^l Werner Scholtz, MD, ^h Uwe Schulz, MD, ^e Ekkehard Grünig, MD, ^m Carmine D, Vizza, MD, ^e
Gerd Staehler, MD, ^e Leonhard Bruch, MD, ^e Doerte Huscher, MSc, PsD, ^{n,e} David Pittrow, MD, ^e
Stephan Rosenkranz, MD^(e)

mPAP>25, W≤15

<u>Atypical</u> (≥ 3 risk factors for left heart disease)

- Arterial hypertension
- Coronary artery dis
- Diabetes
- Atrial fibrillation
- BMI>30 kg/m2

<u>HEFpEF</u>

- mPAP>25, W>15
- EF>45%
- Diastolic dysfunction

Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension

1.000

< 0.001

< 0.001

0.615

0.025

0.186

0.006

0.629

0.309

0.804

1.000

1.000

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.089

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

VOL. 68, NO. 4, 2016

ISSN 0735-1097

1.000

< 0.001

< 0.001

< 0.001

< 0.001

0.437

< 0.001

< 0.001

< 0.001

0.999

0.963

0.021

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.653

0.686

0.002

0.315

0.787

< 0.001

0.326

< 0.001

< 0.001

< 0.001

0.863

0.312

0.066

0.021

0.049

< 0.001

0.187

0.002

0.988

A Pathophysiological Continuum

467 (59.4)

28.1 (24.5-32.6)

91 (11.8)

540 (70.3)

137 (17.8)

 289.5 ± 121.8

 9.8 ± 5.4

 46.0 ± 11.9

 12.5 ± 6.0

 33.5 ± 13.1

 2.2 ± 0.8

 9.6 ± 6.7

 62.2 ± 9.0

269 (127-541)

1,738 (621-3,891)

66.5

32.0

30.6

28.9

37.6

Christian F. Opitz, MD, 4th Marius M. Hoeper, MD, 5J. Simon R. Gibbs, MD, 4 Harald Kaemmerer, MD, VMD, 5 Joanna Pepke-Zaba, MD, J. Gerry Coghlan, MD, Laura Scelsi, MD, Michele D'Alto, MD, Karen M. Olsson, MD, Silvia Ulrich, MD,1 Werner Scholtz, MD,1 Uwe Schulz, MD,2 Ekkehard Grünig, MD,10 Carmine D, Vizza, MD,10 Gerd Staehler, MD," Leonhard Bruch, MD," Doerte Huscher, MSc, PsD, " David Pittrow, MD," Stephan Rosenkranz, MD^{I,11}

250 (59.4)

26.0 (23.3-29.8)

71 (17.4)

275 (67.6)

61 (15.0)

 319.0 ± 123.5

 8.5 ± 5.2

 46.9 ± 13.3

 9.3 ± 3.4

 37.6 ± 13.6

 2.3 ± 0.8

 10.8 ± 6.0

 62.1 ± 9.9

287 (119-543)

1,435 (541-3,888)

43.2

15.7

10.7

10.7

23.5

doi.org/10.1016/j.jacc.2016.05.047

140 (61.9)

29.6 (25.7-34.0)

8 (3.6)

169 (75.1)

48 (21.3)

 260.0 ± 115.0

 12.9 ± 4.8

 45.7 ± 9.4

 19.9 ± 4.4

 25.8 ± 9.1

 2.2 ± 0.7

 7.0 ± 3.4

 62.1 ± 6.9

310 (186-638)

2,196 (1,125-4,285)

91.9

46.4

41.2

54.4

47.1

Female BMI, kg/m²

WHO-FC

1/11

Ш

I۷

6MWD, m

RAP, mm Hg

PAPm, mm Hg

PAWP, mm Hq

PVR, Wood Units

NT-proBNP, pg/ml

Diabetes mellitus

BMI >30 kg/m²

Arterial hypertension

Cardiac index, I/min/m²

TPG, mm Hg

SvO₂, %

CAD

ΑF

BNP, pg/ml

TABLE 1	Baseline Characteristics						
	All Patients (N = 786)	Typical IPAH (n = 421)	Atypical IPAH (n = 139)	Typical vs. Atypical IPAH p Value	PH-HFpEF (n = 226)	Typical IPAH vs. PH-HFpEF p Value	Atypical IPAH vs. PH-HFpEF p Value
Age, vrs	66.6 ± 15.0	61.5 ± 17.3	71.3 ± 9.2	< 0.001	73.2 ± 8.3	< 0.001	0.434

77 (55.4%)

32.2 (28.3-36.0)

12 (8.8)

96 (70.6)

28 (20.6)

 250.5 ± 104.2

 8.9 ± 4.8

 43.9 ± 10.7

 10.0 ± 3.6

 33.9 ± 11.1

 2.2 ± 0.8

 9.8 ± 10.6

 62.7 ± 9.0

200 (115-469)

1,683 (478-2,815)

98.6

59.7

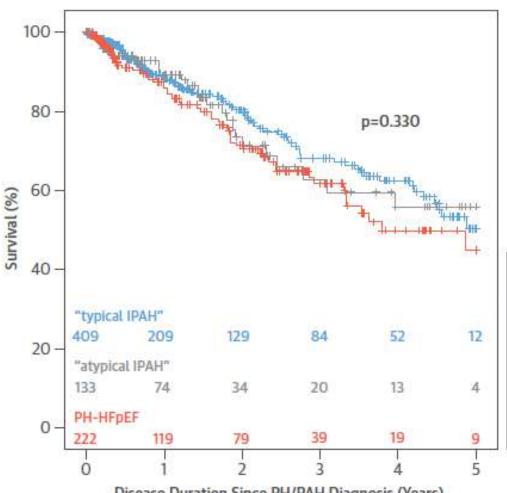
74.8

42.4

65.2

Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY


VOL. 68, NO. 4, 2016 ISSN 0735-1097

doi.org/10.1016/j.jacc.2016.05.047

A Pathophysiological Continuum

Christian F. Opitz, MD, Marius M. Hoeper, MD, J. Simon R. Gibbs, MD, Harald Kaemmerer, MD, VMD, Joanna Pepke-Zaba, MD, J. Gerry Coghlan, MD, Laura Scelsi, MD, Michele D'Alto, MD, Karen M. Olsson, MD, Silvia Ulrich, MD,1 Werner Scholtz, MD,1 Uwe Schulz, MD,2 Ekkehard Grünig, MD,11 Carmine D. Vizza, MD,11 Gerd Staehler, MD," Leonhard Bruch, MD," Doerte Huscher, MSc, PHD, "- David Pittrow, MD," Stephan Rosenkranz, MD^{I,41}

FIGURE 2 5-Year Overall Survival

Years after diagnosis	"typical IPAH"	"atypical IPAH"	p ₁	HFpEF	p ₂	p ₃
0	100%	100%		100%		
1	88.5%	89.1%		86.7%		
2	80.3%	73.4%	1.000	71.2%	0.384	1.000
3	68.0%	62.6%		61.7%		
4	62.4%	55.7%		49.8%		
5	50.2%	55.7%		44.8%	1	

Disease Duration Since PH/PAH Diagnosis (Years)

PAH in elderly patients – Why are so many male patients affected?

Is there a smoking-related pulmonary

vasculopathy presenting as a vanishing capillary

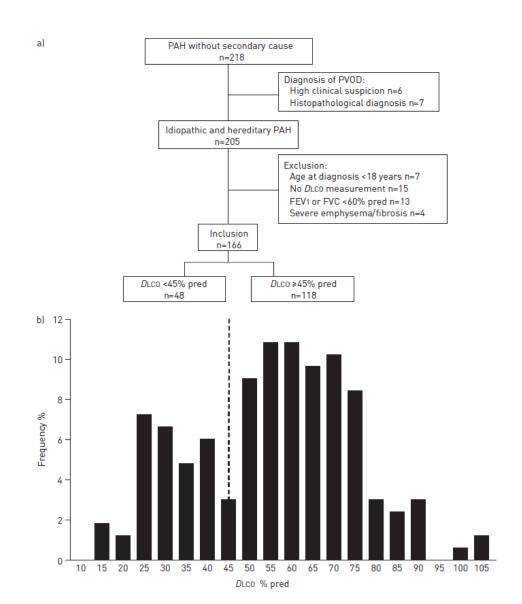
syndrome?

Loss of pulmonary capillaries due to apoptosis?

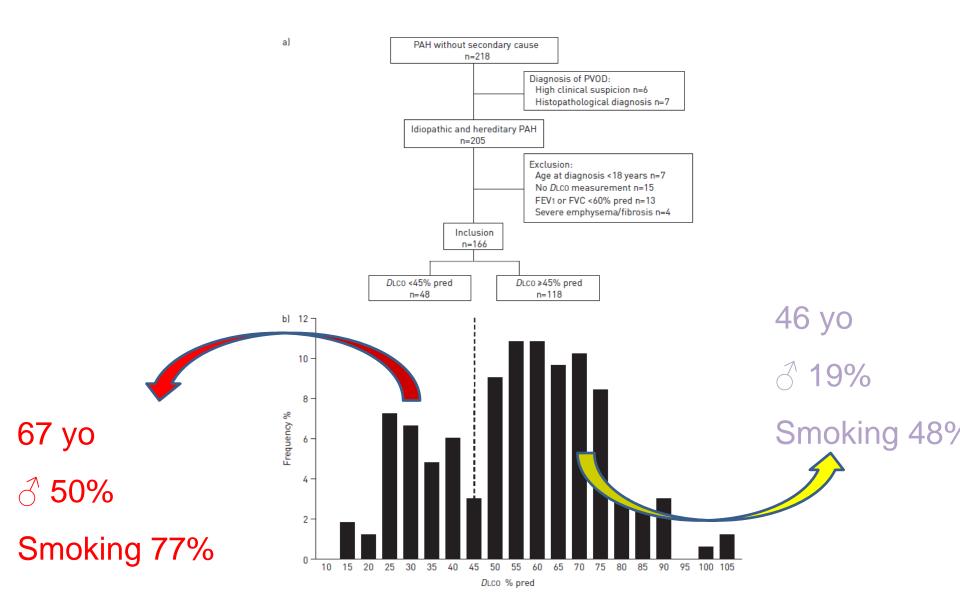
Inducible NOS Inhibition Reverses Tobacco-Smoke-Induced Emphysema and Pulmonary Hypertension in Mice

Michael Seimetz, 1,5 Nirmal Parajuli, 1,5 Alexandra Pichl, 1 Florian Veit, 1 Grazyna Kwapiszewska, 1 Friederike C. Weisel, 1 Katrin Milger, 1 Bakytbek Egemnazarov, 1 Agnieszka Turowska, 4 Beate Fuchs, 1 Sandeep Nikam, 2 Markus Roth, 1 Akylbek Sydykov, 1 Thomas Medebach, 1 Walter Klepetko, 3 Peter Jaksch, 3 Rio Dumitrascu, 1 Holger Gam, 4 Robert Voswinckel, 2 Sawa Kostin, 2 Werner Seeger, 1 Ralph T. Schemuly, 2 Friedrich Grimminger, 1 Hossein A. Ghofrani, 1 and Norbert Weissmann 1,8

PAH with a low DLCO



ORIGINAL ARTICLE
PULMONARY VASCULAR DISEASES


Severely reduced diffusion capacity in idiopathic pulmonary arterial hypertension: patient characteristics and treatment responses

Pia Trip¹, Esther J. Nossent¹, Frances S. de Man^{1,2}, Inge A.H. van den Berk³, Anco Boonstra¹, Herman Groepenhoff¹, Edward M. Leter⁴, Nico Westerhof^{1,2}, Katrien Grünberg⁵, Harm-Jan Bogaard¹ and Anton Vonk-Noordegraaf¹

PAH with a low DLCO

PAH with a low DLCO

Similar treatment response regardless of DLCO

Pulmonary Circulation

Research Article

Treatment response in patients with idiopathic pulmonary arterial hypertension and a severely reduced diffusion capacity

Cathelijne E. van der Bruggen^{1,*}, Onno A. Spruijt^{1,*}, Esther J. Nossent¹, Pia Trip¹, J. Tim Marcus², Frances S. de Man¹, Harm Jan Bogaard¹ and Anton Vonk Noordegraaf¹

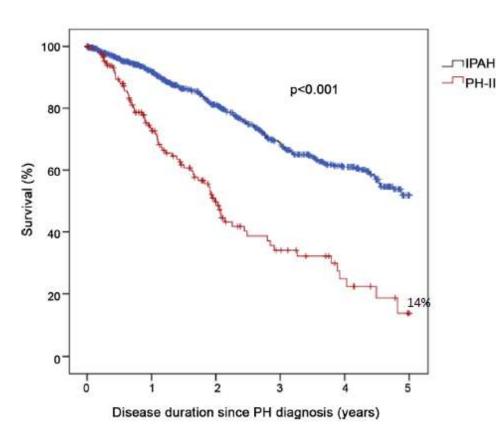
Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands; Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands

Abstract

Patients with idiopathic pulmonary arterial hypertension (IPAH) and a reduced diffusion capacity of the lung for carbon monoxide (DLCO) have a worse survival compared to IPAH patients with a preserved DLCO. Whether this poor survival can be explained by unresponsiveness to pulmonary hypertension (PH)-specific vasodilatory therapy is unknown. Therefore, the aim of this study was to evaluate the hemodynamic and cardiac response to PH-specific vasodilatory therapy in patients with IPAH and a reduced DLCO. Retrospectively, we studied treatment naïve hereditary and IPAH patients diagnosed between January 1990 and May 2015 at the VU University Medical Center. After exclusion of participants without available baseline DLCO measurement or right heart catheterization data and participants carrying a BMPR2 mutation, 166 participants could be included in this study. Subsequently, hemodynamics, cardiac function, exercise capacity, and oxygenation at baseline and after PH-specific vasodilatory therapy were compared between IPAH patients with a preserved DLCO (DLCO >62%), IPAH patients with a moderately reduced DLCO (DLCO 43–62%), and IPAH patients with a severely reduced DLCO (DLCO <43%). Baseline hemodynamics and right ventricular function were not different between groups. Baseline oxygenation was worse in patients with IPAH and a severely reduced DLCO. Hemodynamics and cardiac function improved in all groups after PH-specific vasodilatory therapy without worsening of oxygenation at rest or during exercise. Patients with IPAH and a severely reduced DLCO show a similar response to PH-specific vasodilatory therapy in terms of hemodynamics, cardiac function, and exercise capacity as patients with IPAH and a moderately reduced or preserved DLCO.

Keywords

diffusion capacity of the lung for carbon monoxide (DLCO), oxygenation, pulmonary arterial hypertension (PAH), right ventricular (RV) function


Date received: 24 June 2016; accepted: 25 October 2016

Pulmonary Circulation 2017; 7(1) 137-144

Pulmonary Hypertension in Patients with Chronic Fibrosing Idiopathic Interstitial Pneumonias

Marius M. Hoeper¹*, Juergen Behr², Matthias Held³, Ekkehard Grunig⁴, C. Dario Vizza⁵, Anton Vonk-Noordegraaf⁶, Tobias J. Lange⁷, Martin Claussen⁸, Christian Grohé⁹, Hans Klose¹⁰, Karen M. Olsson¹, Thomas Zelniker¹¹, Claus Neurohr², Oliver Distler¹², Hubert Wirtz¹³, Christian Opitz¹⁴, Doerte Huscher¹⁵, David Pittrow¹⁶, J. Simon R. Gibbs¹⁷

COMPERA registry

PH-IIP n=151 (IPF: 113, NSIP:38) 79% severe PH (mPAP>35mmmHg) FVC 62.9±20.0, DLco 28.5±15.8

- •88% PDF5i
- •Short-term response to therapy (6MWT & FC) comparable to that of IPAH
- Dismal survival

In conclusion

- An individual comprehensive risk assessment should guide the management of patient with PAH
- Combination therapy has become the mainstay for our approach to treatment
- A proactive approach is necessary to reach our treatment goals (move patients into low risk category and ensure long term outcome).

Thank you for your attention

